A076479 a(n) = mu(rad(n)), where mu is the Moebius-function (A008683) and rad is the radical or squarefree kernel (A007947).
1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Zeitschr., Vol. 74 (1960), pp. 66-80.
- Jan van de Lune and Robert E. Dressler, Some theorems concerning the number theoretic function omega(n), Journal für die reine und angewandte Mathematik, Vol. 277 (1975), pp. 117-119; alternative link.
Crossrefs
Programs
-
Haskell
a076479 = a008683 . a007947 -- Reinhard Zumkeller, Jun 01 2013
-
Magma
[(-1)^(#PrimeDivisors(n)): n in [1..100]]; // Vincenzo Librandi, Dec 31 2018
-
Maple
A076479 := proc(n) (-1)^A001221(n) ; end proc: seq(A076479(n),n=1..80) ; # R. J. Mathar, Nov 02 2016
-
Mathematica
Table[(-1)^PrimeNu[n], {n,50}] (* Enrique Pérez Herrero, Jan 17 2013 *)
-
PARI
N=66; mu=vector(N); mu[1]=1; { for (n=2,N, s = 0; fordiv (n,d, if (gcd(d,n/d)!=1, next() ); /* unitary divisors only */ s += mu[d]; ); mu[n] = -s; ); }; mu /* Joerg Arndt, May 13 2011 */ /* omitting the line if ( gcd(...)) gives the usual Moebius function */
-
PARI
a(n)=(-1)^omega(n) \\ Charles R Greathouse IV, Aug 02 2013
-
Python
from math import prod from sympy.ntheory import mobius, primefactors def A076479(n): return mobius(prod(primefactors(n))) # Chai Wah Wu, Sep 24 2021
Formula
a(n) = (-1)^A001221(n). Multiplicative with a(p^e) = -1. - Vladeta Jovovic, Dec 03 2002
a(n) = sign(A180403(n)). - Mats Granvik, Oct 08 2010
Sum_{n>=1} a(n)*phi(n)/n^3 = A065463 with phi()=A000010() [Cohen, Lemma 3.5]. - R. J. Mathar, Apr 11 2011
Dirichlet convolution of A000012 with A226177 (signed variant of A074823 with one factor mu(n) removed). - R. J. Mathar, Apr 19 2011
Sum_{n>=1} a(n)/n^2 = A065469. - R. J. Mathar, Apr 19 2011
a(n) = Sum_{d|n} mu(d)*tau_2(d) = Sum_{d|n} A008683(d)*A000005(d) . - Enrique Pérez Herrero, Jan 17 2013
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 - 2p^(-s)). - Álvar Ibeas, Dec 30 2018
Sum_{n>=1} a(n)/n = 0 (van de Lune and Dressler, 1975). - Amiram Eldar, Mar 05 2021
From Richard L. Ollerton, May 07 2021: (Start)
For n>1, Sum_{k=1..n} a(gcd(n,k))*phi(gcd(n,k))*rad(gcd(n,k))/gcd(n,k) = 0.
For n>1, Sum_{k=1..n} a(n/gcd(n,k))*phi(gcd(n,k))*rad(n/gcd(n,k))*gcd(n,k) = 0. (End)
a(n) = Sum_{d1|n} Sum_{d2|n} mu(d1*d2). - Ridouane Oudra, May 25 2023
Comments