A077036 Duplicate of A076604.
11, 60, 61, 1860, 1861, 1731660, 1731661, 1499324909460, 1499324909461
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(1)=3 implies a(2)=4 and a(3)=5: 3^2+4^2=5^2. a(3)=5 implies a(4)=12 and a(5)=13: 5^2+12^2=13^2.
nxt[{n_,a_}]:={n+1,If[OddQ[n],(a^2-1)/2,a+1]}; NestList[nxt,{1,17},20][[All,2]] (* Harvey P. Dale, Mar 27 2021 *)
a(n) = if(n==1,17,if(n%2,a(n-1)+1,(a(n-1)^2 - 1)/2)) \\ Eric Chen, Jun 09 2018
a(1)=7 therefore a(2)=24 and a(3)=25: 7^2+24^2=25^2; a(3)=25 therefore a(4)=60 and a(5)=65: 25^2+60^2=65^2.
from math import isqrt from sympy.ntheory.primetest import is_square def aupton(terms): alst = [7] for n in range(2, terms+1, 2): sq1, an = alst[-1]**2, alst[-1] + 1 while not is_square(sq1 + an**2): an += 1 alst.extend([an, isqrt(sq1 + an**2)]) return alst[:terms] print(aupton(19)) # Michael S. Branicky, Jul 24 2021
Comments