cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A077036 Duplicate of A076604.

Original entry on oeis.org

11, 60, 61, 1860, 1861, 1731660, 1731661, 1499324909460, 1499324909461
Offset: 1

Views

Author

Keywords

A077034 a(1)=3; a(2n), a(2n+1) are smallest integers > a(2n-1) such that a(2n-1)^2+a(2n)^2=a(2n+1)^2.

Original entry on oeis.org

3, 4, 5, 12, 13, 84, 85, 132, 157, 12324, 12325, 15960, 20165, 26280, 33125, 79500, 86125, 95400, 128525, 152040, 199085, 477804, 517621, 871500, 1013629, 513721874820, 513721874821, 4351526469072, 4381745402885, 10516188966924, 11392538047501
Offset: 1

Views

Author

Zak Seidov, Oct 21 2002

Keywords

Comments

Note that each time two more terms are added simultaneously. The sequence is infinite.
Smallest sequence of Pythagorean triples {a(k-1),a(k),a(k+1)},with k=2n,such that the hypotenuse of one triangle is the short leg of the next one. Such a sequence is called 2-prime Pythagorean because only the first two triangles (3,4,5),(5,12,13) both have prime hypotenuse and short leg. The next such sequence is given by A076604. Actually, the starting terms for all 2-prime and 3-prime Pythagorean triangles are given respectively by A048270 and A048295. The starting term for the smallest n-prime Pythagorean triangle is A105318. - Lekraj Beedassy, Sep 16 2005
a(2n) <= (a(2n-1)^2-1)/2; a(2n+1) <= (a(2n-1)^2+1)/2. [Max Alekseyev, May 11 2011]

Examples

			a(1)=3 implies a(2)=4 and a(3)=5: 3^2+4^2=5^2.
a(3)=5 implies a(4)=12 and a(5)=13: 5^2+12^2=13^2.
		

Crossrefs

Extensions

More terms from Max Alekseyev, May 11 2011

A304207 a(1)=17; for n>1, a(n) = (a(n-1)^2 - 1)/2 if n is even, a(n-1) + 1 if n is odd.

Original entry on oeis.org

17, 144, 145, 10512, 10513, 55261584, 55261585, 1526921388356112, 1526921388356113, 1165744463109679828308252234384, 1165744463109679828308252234385, 679480076635437837059150531810555804350472205781672488164112, 679480076635437837059150531810555804350472205781672488164113
Offset: 1

Views

Author

Benjamin Knight, May 08 2018

Keywords

Comments

{17, 144, 145}, {145, 10512, 10513}, {10513, 55261584, 55261585}, ... are sides {a < b < c} of the right triangles, with hypotenuse c = b + 1.

Crossrefs

Same basic form as A076601, A076602, A076603, and A076604.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,If[OddQ[n],(a^2-1)/2,a+1]}; NestList[nxt,{1,17},20][[All,2]] (* Harvey P. Dale, Mar 27 2021 *)
  • PARI
    a(n) = if(n==1,17,if(n%2,a(n-1)+1,(a(n-1)^2 - 1)/2)) \\ Eric Chen, Jun 09 2018

A077035 a(1)=7; a(n),a(n+1) are smallest > a(n-1) such that a(n-1)^2+a(n)^2=a(n+1)^2.

Original entry on oeis.org

7, 24, 25, 60, 65, 72, 97, 4704, 4705, 11292, 12233, 79044, 79985, 124212, 147737, 430416, 455065, 504072, 679097, 24502296, 24511705, 34278300, 42140545, 68012700, 80009705, 192023292, 208025233, 356427144, 412692145, 990461148, 1072999577, 2403086064, 2631758105
Offset: 1

Views

Author

Zak Seidov, Oct 21 2002

Keywords

Comments

Note that each time two more terms are added simultaneously.

Examples

			a(1)=7 therefore a(2)=24 and a(3)=25: 7^2+24^2=25^2; a(3)=25 therefore a(4)=60 and a(5)=65: 25^2+60^2=65^2.
		

Crossrefs

Programs

  • Python
    from math import isqrt
    from sympy.ntheory.primetest import is_square
    def aupton(terms):
        alst = [7]
        for n in range(2, terms+1, 2):
            sq1, an = alst[-1]**2, alst[-1] + 1
            while not is_square(sq1 + an**2): an += 1
            alst.extend([an, isqrt(sq1 + an**2)])
        return alst[:terms]
    print(aupton(19)) # Michael S. Branicky, Jul 24 2021

Extensions

a(16) and beyond from Michael S. Branicky, Jul 24 2021
Showing 1-4 of 4 results.