A076668 Decimal expansion of sqrt(2/Pi).
7, 9, 7, 8, 8, 4, 5, 6, 0, 8, 0, 2, 8, 6, 5, 3, 5, 5, 8, 7, 9, 8, 9, 2, 1, 1, 9, 8, 6, 8, 7, 6, 3, 7, 3, 6, 9, 5, 1, 7, 1, 7, 2, 6, 2, 3, 2, 9, 8, 6, 9, 3, 1, 5, 3, 3, 1, 8, 5, 1, 6, 5, 9, 3, 4, 1, 3, 1, 5, 8, 5, 1, 7, 9, 8, 6, 0, 3, 6, 7, 7, 0, 0, 2, 5, 0, 4, 6, 6, 7, 8, 1, 4, 6, 1, 3, 8, 7, 2, 8, 6, 0, 6, 0
Offset: 0
Examples
0.79788456080286535587989211986876373695171726232986931533...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Harmann König, Carsten Schütt, and Nicole Tomczak-Jaegermann, Projection constants of symmetric spaces and variants of Khintchine's inequality, J. reine angew. Math. 511 (1999), pp. 1-42.
- Index entries for transcendental numbers
Crossrefs
Programs
-
Magma
pi:=Sqrt(2/Pi(RealField(110))); Reverse(Intseq(Floor(10^110*pi))); // Vincenzo Librandi, Jul 01 2017
-
Mathematica
RealDigits[Sqrt[2/Pi],10,120][[1]] (* Harvey P. Dale, Feb 05 2012 *)
-
PARI
sqrt(2/Pi) \\ G. C. Greubel, Sep 23 2017
Formula
Equals integral_{-infinity..infinity} (1-erf(x)^2)/2 dx. - Jean-François Alcover, Feb 25 2015
Extensions
More terms and better description from Benoit Cloitre and Michael Somos, Oct 29 2002
Leading zero removed, offset changed by R. J. Mathar, Feb 05 2009
Comments