cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A202605 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the Fibonacci self-fusion matrix (A202453).

Original entry on oeis.org

1, -1, 1, -3, 1, 1, -6, 9, -1, 1, -9, 26, -24, 1, 1, -12, 52, -96, 64, -1, 1, -15, 87, -243, 326, -168, 1, 1, -18, 131, -492, 1003, -1050, 441, -1, 1, -21, 184, -870, 2392, -3816, 3265, -1155, 1, 1, -24, 246, -1404, 4871, -10500, 13710
Offset: 1

Views

Author

Clark Kimberling, Dec 21 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive and interlace the zeros of p(n+1). (See the references and examples.)
Following is a guide to sequences (f(n)) for symmetric matrices (self-fusion matrices) and characteristic polynomials. Notation: F(k)=A000045(k) (Fibonacci numbers); floor(n*tau)=A000201(n) (lower Wythoff sequence); "periodic x,y" represents the sequence (x,y,x,y,x,y,...).
f(n)........ symmetric matrix.. char. polynomial
1............... A087062....... A202672
n............... A115262....... A202673
n^2............. A202670....... A202671
2n-1............ A202674....... A202675
3n-2............ A202676....... A202677
n(n+1)/2........ A185957....... A202678
2^n-1........... A202873....... A202767
2^(n-1)......... A115216....... A202868
floor(n*tau).... A202869....... A202870
F(n)............ A202453....... A202605
F(n+1).......... A202874....... A202875
Lucas(n)........ A202871....... A202872
F(n+2)-1........ A202876....... A202877
F(n+3)-2........ A202970....... A202971
(F(n))^2........ A203001....... A203002
(F(n+1))^2...... A203003....... A203004
C(2n,n)......... A115255....... A203005
(-1)^(n+1)...... A003983....... A076757
periodic 1,0.... A203905....... A203906
periodic 1,0,0.. A203945....... A203946
periodic 1,0,1.. A203947....... A203948
periodic 1,1,0.. A203949....... A203950
periodic 1,0,0,0 A203951....... A203952
periodic 1,2.... A203953....... A203954
periodic 1,2,3.. A203955....... A203956
...
In the cases listed above, the zeros of the characteristic polynomials are positive. If more general symmetric matrices are used, the zeros are all real but not necessarily positive - but they do have the interlace property. For a guide to such matrices and polynomials, see A202605.

Examples

			The 1st principal submatrix (ps) of A202453 is {{1}} (using Mathematica matrix notation), with p(1) = 1-x and zero-set {1}.
...
The 2nd ps is {{1,1},{1,2}}, with p(2) = 1-3x+x^2 and zero-set {0.382..., 2.618...}.
...
The 3rd ps is {{1,1,2},{1,2,3},{2,3,6}}, with p(3) = 1-6x+9x^2-x^3 and zero-set {0.283..., 0.426..., 8.290...}.
  ...
Top of the array A202605:
  1,   -1;
  1,   -3,    1;
  1,   -6,    9,   -1;
  1,   -9,   26,  -24,    1;
  1,  -12,   52,  -96,   64,   -1;
  1,  -15,   87, -243,  326, -168,    1;
		

Crossrefs

Programs

  • Mathematica
    f[k_] := Fibonacci[k];
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]

A077510 Numbers k such that k + pi(k) is a prime.

Original entry on oeis.org

2, 3, 7, 9, 12, 13, 21, 28, 32, 36, 45, 52, 55, 57, 61, 65, 70, 76, 79, 81, 84, 86, 89, 101, 104, 110, 119, 121, 131, 135, 139, 145, 147, 155, 160, 162, 172, 181, 185, 187, 195, 205, 216, 222, 223, 228, 231, 253, 258, 262, 273, 278, 286, 288, 292, 297, 305, 310
Offset: 1

Views

Author

Amarnath Murthy, Nov 08 2002

Keywords

Comments

Conjecture: for k > 5, prime(n) <= k < prime(n+1) <= k + pi(k), i.e., the smallest prime greater than k is <= k + pi(k). Equality holds for k = 7.

Examples

			21 is a member as 21 + pi(21) = 21 + 8 = 29 is a prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[350],PrimeQ[#+PrimePi[#]]&] (* Harvey P. Dale, Nov 19 2011 *)
  • PARI
    for(n=1,200,if(isprime(n+primepi(n)),print1(n,", "))) \\ Derek Orr, Jun 22 2015
    
  • PARI
    pi=0; p=2; forprime(q=3,1e3, pi++; for(n=p,q-1, if(isprime(n+pi), print1(n", "))); p=q) \\ Charles R Greathouse IV, Jun 23 2015

Extensions

More terms from David Garber, Nov 10 2002

A186098 Primes removed by sieve generating A095117.

Original entry on oeis.org

2, 7, 23, 31, 41, 53, 61, 137, 157, 193, 233, 241, 257, 283, 293, 311, 397, 439, 479, 499, 523, 557, 593, 647, 883, 1061, 1129, 1213, 1303, 1381, 1429, 1439, 1543, 1601, 1847, 1867, 1877, 1931, 2011, 2063, 2129, 2293, 2333, 2347, 2393, 2477, 2551, 2633, 2677, 2687
Offset: 1

Views

Author

Carmine Suriano, Mar 29 2011

Keywords

Comments

Primes not of the form k + primepi(k). [corrected by Michel Marcus, Oct 27 2021]

Crossrefs

Complement of A076757 in the primes.
Cf. A095117.

Programs

  • Mathematica
    Complement[Prime@ Range@ PrimePi[#], Array[PrimePi[#] + # &, #]] &[2700] (* Michael De Vlieger, Oct 27 2021 *)
  • PARI
    genit(maxx=50)={arr=List(); for(n=0,maxx,q=n+prime(n+1); if(ispseudoprime(q),listput(arr,q))); arr} \\ Bill McEachen, Oct 27 2021

A228865 Primes of the form n^2 + pi(n).

Original entry on oeis.org

5, 11, 53, 149, 331, 449, 1307, 1381, 1777, 2039, 2719, 3041, 3617, 3739, 4243, 4643, 4919, 6263, 7079, 9049, 9629, 12799, 16931, 18257, 20483, 21059, 24061, 32441, 32803, 34267, 38069, 42071, 46703, 49331, 53411, 57173, 64063, 68699, 74587, 75683, 105691, 110291
Offset: 1

Views

Author

K. D. Bajpai, Sep 05 2013

Keywords

Comments

Conjecture: the sequence is infinite.

Examples

			a(6)= 449 which is a prime. 21^2+pi(21) = 441 + 8 = 449.
		

Crossrefs

Programs

  • Maple
    with(numtheory): KD:= proc() local a,b;  a:= n^2+pi(n); if isprime(a) then RETURN(a): fi; end: seq(KD(),n=1..1000);
Showing 1-4 of 4 results.