A202605
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the Fibonacci self-fusion matrix (A202453).
Original entry on oeis.org
1, -1, 1, -3, 1, 1, -6, 9, -1, 1, -9, 26, -24, 1, 1, -12, 52, -96, 64, -1, 1, -15, 87, -243, 326, -168, 1, 1, -18, 131, -492, 1003, -1050, 441, -1, 1, -21, 184, -870, 2392, -3816, 3265, -1155, 1, 1, -24, 246, -1404, 4871, -10500, 13710
Offset: 1
The 1st principal submatrix (ps) of A202453 is {{1}} (using Mathematica matrix notation), with p(1) = 1-x and zero-set {1}.
...
The 2nd ps is {{1,1},{1,2}}, with p(2) = 1-3x+x^2 and zero-set {0.382..., 2.618...}.
...
The 3rd ps is {{1,1,2},{1,2,3},{2,3,6}}, with p(3) = 1-6x+9x^2-x^3 and zero-set {0.283..., 0.426..., 8.290...}.
...
Top of the array A202605:
1, -1;
1, -3, 1;
1, -6, 9, -1;
1, -9, 26, -24, 1;
1, -12, 52, -96, 64, -1;
1, -15, 87, -243, 326, -168, 1;
- S.-G. Hwang, Cauchy's interlace theorem for eigenvalues of Hermitian matrices, American Mathematical Monthly 111 (2004) 157-159.
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
- A. Mercer and P. Mercer, Cauchy's interlace theorem and lower bounds for the spectral radius, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566.
-
f[k_] := Fibonacci[k];
U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
L[n_] := Transpose[U[n]];
F[n_] := CharacteristicPolynomial[L[n].U[n], x];
c[n_] := CoefficientList[F[n], x]
TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%]
TableForm[Table[c[n], {n, 1, 10}]]
A077510
Numbers k such that k + pi(k) is a prime.
Original entry on oeis.org
2, 3, 7, 9, 12, 13, 21, 28, 32, 36, 45, 52, 55, 57, 61, 65, 70, 76, 79, 81, 84, 86, 89, 101, 104, 110, 119, 121, 131, 135, 139, 145, 147, 155, 160, 162, 172, 181, 185, 187, 195, 205, 216, 222, 223, 228, 231, 253, 258, 262, 273, 278, 286, 288, 292, 297, 305, 310
Offset: 1
21 is a member as 21 + pi(21) = 21 + 8 = 29 is a prime.
-
Select[Range[350],PrimeQ[#+PrimePi[#]]&] (* Harvey P. Dale, Nov 19 2011 *)
-
for(n=1,200,if(isprime(n+primepi(n)),print1(n,", "))) \\ Derek Orr, Jun 22 2015
-
pi=0; p=2; forprime(q=3,1e3, pi++; for(n=p,q-1, if(isprime(n+pi), print1(n", "))); p=q) \\ Charles R Greathouse IV, Jun 23 2015
A186098
Primes removed by sieve generating A095117.
Original entry on oeis.org
2, 7, 23, 31, 41, 53, 61, 137, 157, 193, 233, 241, 257, 283, 293, 311, 397, 439, 479, 499, 523, 557, 593, 647, 883, 1061, 1129, 1213, 1303, 1381, 1429, 1439, 1543, 1601, 1847, 1867, 1877, 1931, 2011, 2063, 2129, 2293, 2333, 2347, 2393, 2477, 2551, 2633, 2677, 2687
Offset: 1
Complement of
A076757 in the primes.
-
Complement[Prime@ Range@ PrimePi[#], Array[PrimePi[#] + # &, #]] &[2700] (* Michael De Vlieger, Oct 27 2021 *)
-
genit(maxx=50)={arr=List(); for(n=0,maxx,q=n+prime(n+1); if(ispseudoprime(q),listput(arr,q))); arr} \\ Bill McEachen, Oct 27 2021
A228865
Primes of the form n^2 + pi(n).
Original entry on oeis.org
5, 11, 53, 149, 331, 449, 1307, 1381, 1777, 2039, 2719, 3041, 3617, 3739, 4243, 4643, 4919, 6263, 7079, 9049, 9629, 12799, 16931, 18257, 20483, 21059, 24061, 32441, 32803, 34267, 38069, 42071, 46703, 49331, 53411, 57173, 64063, 68699, 74587, 75683, 105691, 110291
Offset: 1
a(6)= 449 which is a prime. 21^2+pi(21) = 441 + 8 = 449.
Showing 1-4 of 4 results.
Comments