A046399
Smallest squarefree palindrome with exactly n distinct prime factors.
Original entry on oeis.org
1, 2, 6, 66, 858, 6006, 222222, 22444422, 244868442, 6434774346, 438024420834, 50146955964105, 2415957997595142, 495677121121776594, 22181673755737618122, 5521159517777159511255, 477552751050050157255774
Offset: 0
- J.-P. Delahaye, Merveilleux nombres premiers ("Amazing primes"), p. 315, Pour la Science, Paris 2000.
-
r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[k = 1; While[r[k] != k || !SquareFreeQ[k] || Length[Select[Divisors[k], PrimeQ]] != n, k++ ]; Print[k], {n, 0, 30}] (* Ryan Propper, Sep 16 2005 *)
A335645
Smallest palindrome with exactly n distinct prime factors.
Original entry on oeis.org
1, 2, 6, 66, 858, 6006, 222222, 20522502, 244868442, 6172882716, 231645546132, 49795711759794, 2415957997595142, 495677121121776594, 22181673755737618122, 5521159517777159511255, 477552751050050157255774, 200345274602020206472543002
Offset: 0
a(3) = 66 because 66 is the smallest palindromic number with 3 distinct prime factors: 2*3*11.
-
omega_palindromes(A, B, n) = A=max(A, vecprod(primes(n))); (f(m, p, j) = my(list=List()); forprime(q=p, sqrtnint(B\m, j), my(v=m*q); if(q == 5 && v%2 == 0, next); while(v <= B, if(j==1, if(v>=A && fromdigits(Vecrev(digits(v))) == v, listput(list, v)), if(v*(q+1) <= B, list=concat(list, f(v, q+1, j-1)))); v *= q)); list); vecsort(Vec(f(1, 2, n)));
a(n) = if(n==0, return(1)); my(x=vecprod(primes(n)), y=2*x); while(1, my(v=omega_palindromes(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 05 2023
-
from sympy import factorint
def A335645(n):
d = 1
while True:
half = (d+1)//2
for left in range(10**(half-1), 10**half):
strleft = str(left)
if d%2 == 0:
m = int(strleft + strleft[::-1])
else:
m = int(strleft + (strleft[:-1])[::-1])
if len(factorint(m)) == n:
return m
d += 1
print([A335645(n) for n in range(8)]) # Michael S. Branicky, Oct 02 2020
A237912
Smallest number m (not ending in a 0) such that m and its digit reversal A004086(m) both have n prime factors (counted with multiplicity).
Original entry on oeis.org
13, 15, 117, 126, 1386, 2576, 21708, 25515, 21168, 46848, 295245, 2937856, 6351048, 21989376, 217340928, 2154281472, 2196652032, 21120051456, 21122906112, 40915058688, 274148425728, 2150086519296, 2707602702336, 6167442456576, 21907217055744, 29798871072768, 420127895977984
Offset: 1
13 and 31 are both prime so a(1) = 13.
15 and 51 have two prime factors (3*5 and 3*17 respectively), so a(2) = 15.
A237913
Smallest number m > 1 (not ending in a 0) such that m and the digit reversal of m have n prime factors (counted with multiplicity). Palindromes are included.
Original entry on oeis.org
2, 4, 8, 88, 252, 2576, 21708, 2112, 4224, 8448, 44544, 48384, 2977792, 21989376, 405504, 4091904, 441606144, 405909504, 886898688, 677707776, 4285005824, 276486684672, 21128282112, 633498894336, 2701312131072, 6739855589376, 29142024192, 65892155129856, 4815463645184, 445488555884544
Offset: 1
252 is the smallest number such that 252 and its reverse (also 252) have 5 prime factors (2*2*3*3*7). So, a(5) = 252.
2576 is the smallest number such that 2576 and its reverse (6752) have 6 prime factors (2*2*2*2*7*23 and 2*2*2*2*2*211, respectively). So a(6) = 2576.
Showing 1-4 of 4 results.
Comments