cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A077085 Initial values such that if A077080(x)=phi(sigma(x)+phi(x)) is started at these numbers then the sequence does not converge.

Original entry on oeis.org

534, 556, 557, 580, 624, 702, 710, 738, 739, 740, 748, 784, 789, 822, 823, 841, 852, 853, 900, 912, 913, 916, 924, 931, 938, 960, 961, 962, 1020, 1021, 1029, 1032, 1033, 1034, 1065, 1089, 1092, 1093, 1098, 1126, 1136
Offset: 1

Views

Author

Labos Elemer, Oct 28 2002

Keywords

Comments

These terms are only conjectures.
These terms survive 1000 iterations. - Sean A. Irvine, May 05 2025

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[DivisorSigma[1, x]+EulerPhi[x]] Do[s=Part[NestList[f, n, 100], 100]; If[Greater[s, 10000000], Print[{n, s}]], {n, 1, 10000}]

A077081 Fixed point when phi(sigma(n)+phi(n))=A077080 is iterated with initial value of n.

Original entry on oeis.org

1, 2, 2, 6, 6, 6, 6, 864, 864, 10, 10, 864, 864, 864, 864, 864, 864, 864, 864, 20, 20, 22, 22, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 48, 864, 46, 46, 48, 864, 864, 48, 864, 864, 48, 48, 48, 48, 58, 58
Offset: 1

Views

Author

Labos Elemer, Oct 28 2002

Keywords

Comments

A065387 when iterated seems to converge [tested for initial values below 1024]. On the other hand iterating A051682 often ends in cycle.
Iteration of phi(A065387())=phi(sigma()+phi()) seems to converge. Tested below n=1024. Critical values however arise. For example: n=534,556,557,580,624,702,710, etc. These initial values generate very large terms and i was unable to decide if they converge.
For n=1..1024 no more but 27 distinct fixed points arised:{1,2,6,10,..,3552,570240}

Examples

			n=225: results in iteration sequence of 44 terms: {225,522,444,...,471744,653312,570240}, a[25]=570240.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[DivisorSigma[1, x]+EulerPhi[x]] Table[FixedPoint[f, w], {w, 1, 256}]

Formula

a(n) = FixedPoint[A077080, n].

A077082 Largest value arising when phi(sigma(n)+phi(n))=A077080 is iterated with initial value of n.

Original entry on oeis.org

1, 2, 3, 6, 6, 6, 7, 1044, 1044, 10, 11, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 20, 21, 22, 23, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 48, 1044, 46, 47, 48, 1044
Offset: 1

Views

Author

Labos Elemer, Oct 28 2002

Keywords

Examples

			n=225: results in iteration sequence of 44 terms: {225,522,444,...,471744,653312,570240}, largest is 653312=a(225).
		

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[DivisorSigma[1, x]+EulerPhi[x]] Table[Max[FixedPointList[f, w]], {w, 1, 1024}]

Formula

a(n) = Max[FixedPointList[A077080, n]]. See program below. Seems convergent. [tested for initial values below 1024.]

A077083 Length of iteration until a fixed point is reached when phi(sigma[n]+phi(n)) = A077080(n) is iterated with initial value of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 2, 16, 16, 1, 2, 16, 17, 17, 16, 15, 16, 15, 16, 1, 2, 1, 2, 14, 14, 16, 15, 14, 15, 14, 15, 13, 14, 15, 15, 10, 11, 15, 14, 13, 14, 11, 12, 2, 14, 1, 2, 1, 12, 6, 2, 12, 13, 3, 2, 2, 3, 1, 2, 11, 12, 11, 2, 11, 14, 10, 11, 13, 2, 2, 3, 5, 6, 14, 10, 10, 2, 12, 13, 9
Offset: 1

Views

Author

Labos Elemer, Oct 28 2002

Keywords

Examples

			n=1,2,6,10,..864: a[n]=1, n is fixed point for some n; n=225: results in iteration sequence of 44 terms: {225,522,444,...,471744,653312,570240}, 44=a[225].
		

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[DivisorSigma[1, x]+EulerPhi[x]] Table[Length[FixedPointList[f, w]]-1, {w, 1, 1024}]

Formula

a(n)=Length[FixedPointList[A077080, n]]-1.

A097646 Numbers n such that n = phi(phi(n) + sigma(n)).

Original entry on oeis.org

1, 2, 6, 10, 20, 22, 46, 48, 58, 82, 106, 166, 178, 180, 208, 226, 262, 346, 358, 382, 466, 478, 502, 562, 586, 718, 838, 862, 864, 886, 982, 1018, 1120, 1186, 1282, 1306, 1318, 1366, 1368, 1438, 1486, 1522, 1618, 1822, 1906, 2026, 2038, 2062, 2098, 2206
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 08 2004

Keywords

Comments

If n=2*p where p is a Sophie Germain odd prime, then n is in the sequence; the proof is obvious.

Examples

			22 is in the sequence because phi(22)=10, sigma(22)=36 and phi(10+36)=22.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2300] | n eq EulerPhi(EulerPhi(n) + DivisorSigma(1,n))]; // Vincenzo Librandi, Aug 22 2015
  • Maple
    with(numtheory):K:=proc()local n,a,c;  c:=1; for n from 1 to 5000000 do;
    a:=phi(phi(n)+ sigma(n));if  a=n  then lprint(c,n); c:=c+1; fi;od; end:K(); # K. D. Bajpai, Jul 18 2013
  • Mathematica
    Do[If[n==EulerPhi[EulerPhi[n]+DivisorSigma[1, n]], Print[n]], {n, 2400}]
    Select[Range[2500],EulerPhi[EulerPhi[#]+DivisorSigma[1,#]]==#&] (* Harvey P. Dale, Jul 06 2021 *)
  • PARI
    is(n)=sigma(n=factor(n))==eulerphi(eulerphi(n)) \\ Charles R Greathouse IV, Nov 27 2013
    
Showing 1-5 of 5 results.