cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A217791 Numbers k such that sigma(k) = 3*sigma(k+1).

Original entry on oeis.org

180, 12000, 30996, 47940, 66780, 102816, 128040, 234300, 494088, 712272, 1133088, 1408212, 1623072, 1692768, 1896336, 1925196, 2024760, 2388720, 2529090, 2836008, 3423120, 3724320, 3822360, 4628760, 4750920, 7219608, 7359912, 7603488, 7749060
Offset: 1

Views

Author

Paolo P. Lava, Mar 25 2013

Keywords

Examples

			47940 is in the sequence because sigma(47940)=145152, sigma(47941)=48384, and 145152=3*48384.
7749060 is in the sequence because sigma(7749060)=24192000, sigma(7749061)=8064000, and 24192000=3*8064000.
		

Crossrefs

Programs

Extensions

More terms from Bruno Berselli, Mar 25 2013

A340713 Numbers k such that sigma(k+1) = 4 * sigma(k).

Original entry on oeis.org

37033919, 141162839, 264995639, 596672999, 606523679, 630777839, 791656319, 920424119, 1060332839, 1379454719, 1954690919, 3799661039, 4024838999, 4633959959, 5393988599, 5935994063, 8831231639, 9866482079, 11237657759, 11273710139, 12266364599, 14440498379, 14952625379
Offset: 1

Views

Author

Seiichi Manyama, Jan 17 2021

Keywords

Crossrefs

Programs

  • PARI
    isok(k) = sigma(k+1) == 4*sigma(k); \\ Michel Marcus, Jan 18 2021

Extensions

a(10)-a(23) from Seiichi Manyama using A058072 data, Jan 17 2021

A340715 Least positive number k such that sigma(k+1) = n * sigma(k).

Original entry on oeis.org

14, 5, 1, 37033919, 14182439039
Offset: 1

Views

Author

Seiichi Manyama, Jan 17 2021

Keywords

Examples

			  n | sigma(a(n)) | sigma(a(n)+1)
----+-------------+--------------
  1 |          24 |            24
  2 |           6 |            12
  3 |           1 |             3
  4 |    39940992 |     159763968
  5 | 14182439040 |   70912195200
		

Crossrefs

Programs

  • Mathematica
    k = 1;n = 1;Print[While[DivisorSigma[1, k + 1] != n*DivisorSigma[1, k], k;k k+]; k] (* Robert P. P. McKone, Jan 17 2021 *)
  • PARI
    {a(n) = my(k=1); while(sigma(k+1)!=n*sigma(k), k++); k}

A077089 Quotients when sigma(k+1)/sigma(k) is an integer.

Original entry on oeis.org

3, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 3, 1, 2, 1, 2, 2, 3, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 3, 2, 2, 1, 2, 2, 1, 2, 3, 3, 1, 3, 1, 2, 2, 2, 3, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 3, 3, 2, 1, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Oct 31 2002

Keywords

Examples

			a(1) = sigma(2)/sigma(1) = 3/1 = 3.
a(2) = sigma(6)/sigma(5) = 12/6 = 2.
a(3) = sigma(15)/sigma(14) = 24/24 = 1.
		

Crossrefs

Programs

  • Mathematica
    Do[s=Mod[a=DivisorSigma[1, n+1], b=DivisorSigma[1, n]]; If[Equal[s, 0], Print[a/b]], {n, 1, 10000000}]
    Select[#[[2]]/#[[1]]&/@Partition[DivisorSigma[1,Range[10^6]],2,1], IntegerQ] (* Harvey P. Dale, Dec 26 2015 *)

Formula

a(n) = sigma(A058072(n)+1)/sigma(A058072(n)). - Seiichi Manyama, Jan 16 2021
Showing 1-4 of 4 results.