A077411 Combined Diophantine Chebyshev sequences A077409 and A077250.
7, 11, 59, 103, 583, 1019, 5771, 10087, 57127, 99851, 565499, 988423, 5597863, 9784379, 55413131, 96855367, 548533447, 958769291, 5429921339, 9490837543, 53750679943, 93949606139, 532076878091, 930005223847, 5267018100967
Offset: 0
Examples
59 = a(2) = sqrt(24*A077410(2)^2 + 25) = sqrt(24*12^2 + 25)= sqrt(3481) = 59.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (0,10,0,-1).
Programs
-
Magma
I:=[7,11,59,103]; [n le 4 select I[n] else 10*Self(n-2) - Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 18 2018
-
Mathematica
CoefficientList[Series[(1-x)*(7+18*x+7*x^2)/(1-10*x^2+x^4), {x,0,50}], x] (* or *) LinearRecurrence[{0,10,0,-1}, {7,11,59,103}, 30] (* G. C. Greubel, Jan 18 2018 *)
-
PARI
x='x+O('x^30); Vec((1-x)*(7+18*x+7*x^2)/(1-10*x^2+x^4)) \\ G. C. Greubel, Jan 18 2018
Comments