A077417 Chebyshev T-sequence with Diophantine property.
1, 11, 131, 1561, 18601, 221651, 2641211, 31472881, 375033361, 4468927451, 53252096051, 634556225161, 7561422605881, 90102515045411, 1073668757939051, 12793922580223201, 152453402204739361, 1816646903876649131, 21647309444315050211
Offset: 0
Examples
G.f. = 1 + 11*x + 131*x^2 + 1561*x^3 + 18601*x^4 221651*x^5 + 2641211*x^6 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- Tanya Khovanova, Recursive Sequences
- J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (12,-1).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Magma
I:=[1,11]; [n le 2 select I[n] else 12*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 10 2014
-
Mathematica
CoefficientList[Series[(1 - x)/(1 - 12 x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *) LinearRecurrence[{12,-1},{1,11},30] (* Harvey P. Dale, Apr 09 2015 *) a[ n_] := With[{x = Sqrt[7/2]}, ChebyshevT[2 n + 1, x]/x] // Expand; (* Michael Somos, Jun 29 2019 *)
-
PARI
my(x='x+O('x^30)); Vec((1-x)/(1-12*x+x^2)) \\ G. C. Greubel, Jan 18 2018
-
PARI
{a(n) = my(x = quadgen(56)/2); simplify(polchebyshev(2*n + 1, 1, x)/x)}; /* Michael Somos, Jun 29 2019 */
Formula
a(n) = 12*a(n-1) - a(n-2), a(-1)=1, a(0)=1.
a(n) = S(n, 12) - S(n-1, 12) = T(2*n+1, sqrt(14)/2)/(sqrt(14)/2) with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 12)=A004191(n).
G.f.: (1-x)/(1-12*x+x^2).
a(n) = (ap^(2*n+1) + am^(2*n+1))/sqrt(14) with ap := (sqrt(7)+sqrt(5))/sqrt(2) and am := (sqrt(7)-sqrt(5))/sqrt(2).
a(n) = sqrt((5*A077416(n)^2 + 2)/7).
a(n)*a(n+3) = 120 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
E.g.f.: exp(6*x)*(7*cosh(sqrt(35)*x) + sqrt(35)*sinh(sqrt(35)*x))/7. - Stefano Spezia, Aug 29 2025
Extensions
More terms from Vincenzo Librandi, Feb 10 2014
Comments