cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077417 Chebyshev T-sequence with Diophantine property.

Original entry on oeis.org

1, 11, 131, 1561, 18601, 221651, 2641211, 31472881, 375033361, 4468927451, 53252096051, 634556225161, 7561422605881, 90102515045411, 1073668757939051, 12793922580223201, 152453402204739361, 1816646903876649131, 21647309444315050211
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

7*a(n)^2 - 5*b(n)^2 = 2 with companion sequence b(n) = A077416(n), n>=0.
a(n) = L(n,12), where L is defined as in A108299; see also A077416 for L(n,-12). - Reinhard Zumkeller, Jun 01 2005
[a(n), A004191(n)] = the 2 X 2 matrix [1,10; 1,11]^(n+1) * [1,0]. - Gary W. Adamson, Mar 19 2008
Hankel transform of A174227. - Paul Barry, Mar 12 2010
Alternate denominators of the continued fraction convergents to sqrt(35), see A041059. - James R. Buddenhagen, May 20 2010
For positive n, a(n) equals the permanent of the (2n)X(2n) tridiagonal matrix with sqrt(10)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Positive values of x (or y) satisfying x^2 - 12xy + y^2 + 10 = 0. - Colin Barker, Feb 09 2014
a(n) = a(-1-n) for all n in Z. - Michael Somos, Jun 29 2019

Examples

			G.f. = 1 + 11*x + 131*x^2 + 1561*x^3 + 18601*x^4 221651*x^5 + 2641211*x^6 + ...
		

Crossrefs

Cf. A072256(n) with companion A054320(n-1), n>=1.
Row 12 of array A094954.
Cf. A004191.
Cf. A041059. [James R. Buddenhagen, May 20 2010]
Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,11]; [n le 2 select I[n] else 12*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 10 2014
    
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 12 x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
    LinearRecurrence[{12,-1},{1,11},30] (* Harvey P. Dale, Apr 09 2015 *)
    a[ n_] := With[{x = Sqrt[7/2]}, ChebyshevT[2 n + 1, x]/x] // Expand; (* Michael Somos, Jun 29 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1-12*x+x^2)) \\ G. C. Greubel, Jan 18 2018
    
  • PARI
    {a(n) = my(x = quadgen(56)/2); simplify(polchebyshev(2*n + 1, 1, x)/x)}; /* Michael Somos, Jun 29 2019 */

Formula

a(n) = 12*a(n-1) - a(n-2), a(-1)=1, a(0)=1.
a(n) = S(n, 12) - S(n-1, 12) = T(2*n+1, sqrt(14)/2)/(sqrt(14)/2) with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 12)=A004191(n).
G.f.: (1-x)/(1-12*x+x^2).
a(n) = (ap^(2*n+1) + am^(2*n+1))/sqrt(14) with ap := (sqrt(7)+sqrt(5))/sqrt(2) and am := (sqrt(7)-sqrt(5))/sqrt(2).
a(n) = sqrt((5*A077416(n)^2 + 2)/7).
a(n)*a(n+3) = 120 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
E.g.f.: exp(6*x)*(7*cosh(sqrt(35)*x) + sqrt(35)*sinh(sqrt(35)*x))/7. - Stefano Spezia, Aug 29 2025

Extensions

More terms from Vincenzo Librandi, Feb 10 2014