A059792
Numbers k such that floor(Pi^k) is prime.
Original entry on oeis.org
1, 3, 4, 12, 73, 317, 2728, 6826, 7683, 7950, 14417, 44436, 63698
Offset: 1
Pi^3 = 31.0062766...; floor(Pi^3) = 31 is prime, hence 3 is a term.
- Eric Weisstein's World of Mathematics, Pi-Prime
-
Do[ If[ PrimeQ[ Floor[ Pi^n ] ], Print[n] ], {n, 0, 4000} ]
$MaxExtraPrecision = 10^6; Do[k = Floor[Pi^n]; If[PrimeQ[k], Print[n]], {n, 1, 15000}] (* Ryan Propper, Oct 21 2005 *)
A109615
Primes of the form floor((Pi/2)^k).
Original entry on oeis.org
2, 3, 23, 37, 1373, 3389, 8363, 115459401415242179, 45851925215547567394556916118490828192232481476091362012033249370219, 1299908856087615767823951491725300134515972513464867209212961415385730635249
Offset: 1
A014214(20) = floor((Pi/2)^20) = floor(8363.6825...) = 8363 and 8363 = A000040(1047), therefore 8363 is a term.
-
a:=proc(n) if isprime(floor(((1/2)*Pi)^n))=true then floor(((1/2)*Pi)^n) else end if end proc: seq(a(n),n=1..100); # Emeric Deutsch, Aug 27 2007
-
lst={};Do[If[PrimeQ[p=Floor[(Pi/2)^n]],AppendTo[lst,p]],{n,600}];lst
A117839
Primes of the form floor(Pi^k + e^k).
Original entry on oeis.org
2, 5, 17, 9255121991, 28870447577
Offset: 1
See also
A059792 (Numbers k such that floor(Pi^k) is prime) and their corresponding primes
A077547.
See also
A059303 (Numbers k such that floor(e^k) + 1 is prime) and their corresponding primes
A118840.
-
Select[Table[Floor[\[Pi]^n+E^n],{n,0,5000}],PrimeQ] (* Harvey P. Dale, Apr 26 2011 *)
Showing 1-3 of 3 results.
Comments