A077585 a(n) = 2^(2^n - 1) - 1.
0, 1, 7, 127, 32767, 2147483647, 9223372036854775807, 170141183460469231731687303715884105727, 57896044618658097711785492504343953926634992332820282019728792003956564819967
Offset: 0
Examples
a(5) = 2^(2^5 - 1) - 1 = 2^31 - 1 = 2147483647.
Links
- Eric Weisstein's World of Mathematics, Double Mersenne Number
Programs
-
Maple
a:= n-> 2^(2^n-1)-1: seq(a(n), n=0..8); # Thomas Wieder, Nov 08 2007
-
Mathematica
2^(2^Range[0, 9] - 1) - 1 (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
-
PARI
a(n)=if(n<1,0,-1+2*(1+a(n-1))^2)
-
PARI
apply( {A077585(n)=1<<(1<
M. F. Hasler, Mar 05 2020 -
Python
def A077585(n): return (1<<(1<
Chai Wah Wu, Mar 14 2023
Formula
a(n) = A058891(n+1) - 1. - corrected by Maurizio De Leo, Feb 25 2015
a(n) = (A001146(n) - 2)/2.
a(n) = A056220(1+a(n-1)).
a(n) = Sum_{k=1..2^n-1} binomial(2^n-1,k). - Thomas Wieder, Nov 08 2007
a(n) = 2*a(n-1)^2 + 4*a(n-1) + 1. - Roderick MacPhee, Oct 05 2012
Extensions
Corrected by Lekraj Beedassy, Jan 02 2007
Comments