cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A000215 Fermat numbers: a(n) = 2^(2^n) + 1.

Original entry on oeis.org

3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, 340282366920938463463374607431768211457, 115792089237316195423570985008687907853269984665640564039457584007913129639937
Offset: 0

Views

Author

Keywords

Comments

It is conjectured that just the first 5 numbers in this sequence are primes.
An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
For n>0, Fermat numbers F(n) have digital roots 5 or 8 depending on whether n is even or odd (Koshy). - Lekraj Beedassy, Mar 17 2005
This is the special case k=2 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058. - Seppo Mustonen, Sep 04 2005
For n>1 final two digits of a(n) are periodically repeated with period 4: {17, 57, 37, 97}. - Alexander Adamchuk, Apr 07 2007
For 1 < k <= 2^n, a(A007814(k-1)) divides a(n) + 2^k. More generally, for any number k, let r = k mod 2^n and suppose r != 1, then a(A007814(r-1)) divides a(n) + 2^k. - T. D. Noe, Jul 12 2007
From Daniel Forgues, Jun 20 2011: (Start)
The Fermat numbers F_n are F_n(a,b) = a^(2^n) + b^(2^n) with a = 2 and b = 1.
For n >= 2, all factors of F_n = 2^(2^n) + 1 are of the form k*(2^(n+2)) + 1 (k >= 1).
The products of distinct Fermat numbers (in their binary representation, see A080176) give rows of Sierpiński's triangle (A006943). (End)
Let F(n) be a Fermat number. For n > 2, F(n) is prime if and only if 5^((F(n)-1)/4) == sqrt(F(n)-1) (mod F(n)). - Arkadiusz Wesolowski, Jul 16 2011
Conjecture: let the smallest prime factor of Fermat number F(n) be P(F(n)). If F(n) is composite, then P(F(n)) < 3*2^(2^n/2 - n - 2). - Arkadiusz Wesolowski, Aug 10 2012
The Fermat primes are not Brazilian numbers, so they belong to A220627, but the Fermat composites are Brazilian numbers so they belong to A220571. For a proof, see Proposition 3 page 36 on "Les nombres brésiliens" in Links. - Bernard Schott, Dec 29 2012
It appears that this sequence is generated by starting with a(0)=3 and following the rule "Write in binary and read in base 4". For an example of "Write in binary and read in ternary", see A014118. - John W. Layman, Jul 30 2013
Conjecture: the numbers > 5 in this sequence, i.e., 2^2^k + 1 for k>1, are exactly the numbers n such that (n-1)^4-1 divides 2^(n-1)-1. - M. F. Hasler, Jul 24 2015

Examples

			a(0) = 1*2^1 + 1 = 3 = 1*(2*1) + 1.
a(1) = 1*2^2 + 1 = 5 = 1*(2*2) + 1.
a(2) = 1*2^4 + 1 = 17 = 2*(2*4) + 1.
a(3) = 1*2^8 + 1 = 257 = 16*(2*8) + 1.
a(4) = 1*2^16 + 1 = 65537 = 2048*(2*16) + 1.
a(5) = 1*2^32 + 1 = 4294967297 = 641*6700417 = (10*(2*32) + 1)*(104694*(2*32) + 1).
a(6) = 1*2^64 + 1 = 18446744073709551617 = 274177*67280421310721 = (2142*(2*64) + 1)*(525628291490*(2*64) + 1).
		

References

  • M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 2nd. ed., 2001; see p. 3.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 7.
  • P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 87.
  • James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, pp. 78-79.
  • R. K. Guy, Unsolved Problems in Number Theory, A3.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 14.
  • E. Hille, Analytic Function Theory, Vol. I, Chelsea, N.Y., see p. 64.
  • T. Koshy, "The Digital Root Of A Fermat Number", Journal of Recreational Mathematics Vol. 32 No. 2 2002-3 Baywood NY.
  • M. Krizek, F. Luca & L. Somer, 17 Lectures on Fermat Numbers, Springer-Verlag NY 2001.
  • C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory, Oxford University Press, NY, 1966, p. 36.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see pp. 18, 59.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 202.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 6-7, 70-75.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 136-137.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 148-149.

Crossrefs

a(n) = A001146(n) + 1 = A051179(n) + 2.
See A004249 for a similar sequence.
Cf. A080176 for binary representation of Fermat numbers.

Programs

  • Haskell
    a000215 = (+ 1) . (2 ^) . (2 ^)  -- Reinhard Zumkeller, Feb 13 2015
    
  • Maple
    A000215 := n->2^(2^n)+1;
  • Mathematica
    Table[2^(2^n) + 1, {n, 0, 8}] (* Alonso del Arte, Jun 07 2011 *)
  • Maxima
    A000215(n):=2^(2^n)+1$ makelist(A000215(n),n,0,10); /* Martin Ettl, Dec 10 2012 */
    
  • PARI
    a(n)=if(n<1,3*(n==0),(a(n-1)-1)^2+1)
    
  • Python
    def a(n): return 2**(2**n) + 1
    print([a(n) for n in range(9)]) # Michael S. Branicky, Apr 19 2021

Formula

a(0) = 3; a(n) = (a(n-1)-1)^2 + 1, n >= 1.
a(n) = a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get the empty product, i.e., 1, plus 2, giving 3 = a(0). - Benoit Cloitre, Sep 15 2002 [edited by Daniel Forgues, Jun 20 2011]
The above formula implies that the Fermat numbers (being all odd) are coprime.
Conjecture: F is a Fermat prime if and only if phi(F-2) = (F-1)/2. - Benoit Cloitre, Sep 15 2002
A000120(a(n)) = 2. - Reinhard Zumkeller, Aug 07 2010
If a(n) is composite, then a(n) = A242619(n)^2 + A242620(n)^2 = A257916(n)^2 - A257917(n)^2. - Arkadiusz Wesolowski, May 13 2015
Sum_{n>=0} 1/a(n) = A051158. - Amiram Eldar, Oct 27 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = A249119.
Product_{n>=0} (1 - 1/a(n)) = 1/2. (End)
a(n) = 2*A077585(n) + 3. - César Aguilera, Jul 26 2023
a(n) = 2*2^A000225(n) + 1. - César Aguilera, Jul 11 2024

A058891 a(n) = 2^(2^(n-1) - 1).

Original entry on oeis.org

1, 2, 8, 128, 32768, 2147483648, 9223372036854775808, 170141183460469231731687303715884105728, 57896044618658097711785492504343953926634992332820282019728792003956564819968
Offset: 1

Views

Author

N. J. A. Sloane, Jan 08 2001

Keywords

Comments

For n > 1, a(n) is the least solution > 1 to rad(x)^(n-1) = tau(x) where rad(x) = A007947(x) is the squarefree kernel of x and tau(x) = A000005(x) the number of divisors of x. - Benoit Cloitre, Apr 18 2002 [Corrected by Michel Marcus, Oct 15 2018]
For n > 1, a(n) is also the total number of possible outcomes of a knockout tournament starting with 2^(n-1) players, taking account of all matches in the tournament. - Martin Griffiths, Mar 26 2009
Also, a(n+1) = 2^(2^n-1) for n >= 1 are solutions x = y of the Diophantine equation x^y * y^x = (x+y)^z in positive integers; corresponding solutions z are in A348332 (see this last sequence for more informations and links). - Bernard Schott, Oct 13 2021
For n > 2, a(n) ends with 8. - Bernard Schott, Oct 20 2021
a(n) is the number of labeled hypergraphs on n - 1 vertices. - Lorenzo Sauras Altuzarra, Apr 01 2023

Examples

			The 8 possible hyperedge sets for the vertex set {1, 2} are {}, {{1}}, {{2}}, {{1, 2}}, {{1}, {2}}, {{1}, {1, 2}}, {{2}, {1, 2}} and {{1}, {2}, {1, 2}}. - _Lorenzo Sauras Altuzarra_, Apr 01 2023
		

References

  • F. Harary, Graph Theory, Page 209, Problem 16.11.

Crossrefs

Programs

  • Maple
    a[1]:=1: for n from 2 to 20 do a[n]:=2*a[n-1]^2 od: seq(a[n], n=1..9); # Zerinvary Lajos, Apr 16 2009
  • Mathematica
    a = 1; b = -3; Table[Expand[(-1/2) ((a + Sqrt[b])^(2^n) + (a - Sqrt[b])^(2^n))], {n, 1, 10}] (* Artur Jasinski, Oct 11 2008 *)
  • PARI
    a(n) = { 2^(2^(n-1)-1) } \\ Harry J. Smith, Jun 23 2009
    
  • Python
    def A058891(n): return 1<<(1<Chai Wah Wu, Dec 12 2022

Formula

a(n) = A053287(A000079(n-1)).
a(1) = 1, a(n+1) = 2*a(n)^2.
a(1) = 1, a(n+1) = 2^n*a(1)*a(2)*...*a(n). - Benoit Cloitre, Sep 13 2003
a(n) = (-1/2)*((1 + sqrt(-3))^(2^n) + (1 - sqrt(-3))^(2^n)). - Artur Jasinski, Oct 11 2008
a(n) = 2*a(n-1)^2 is an example with a(1) = 1 and k = 2 of a(n) = k*a(n-1)^2; general explicit formula: a(n) = ((a(1)*k)^(2^(n-1)))/k. - Andreas Pfaffel (andreas.pfaffel(AT)gmx.at), Apr 27 2010
a(n) = A077585(n-1) + 1. - Maurizio De Leo, Feb 25 2015
a(n) = 2^A000225(n-1). - Michel Marcus, Aug 19 2020
Sum_{n>=0} 1/a(n) = A076214. - Amiram Eldar, Oct 27 2020

A056220 a(n) = 2*n^2 - 1.

Original entry on oeis.org

-1, 1, 7, 17, 31, 49, 71, 97, 127, 161, 199, 241, 287, 337, 391, 449, 511, 577, 647, 721, 799, 881, 967, 1057, 1151, 1249, 1351, 1457, 1567, 1681, 1799, 1921, 2047, 2177, 2311, 2449, 2591, 2737, 2887, 3041, 3199, 3361, 3527, 3697, 3871, 4049, 4231, 4417, 4607, 4801
Offset: 0

Views

Author

N. J. A. Sloane, Aug 06 2000

Keywords

Comments

Image of squares (A000290) under "little Hankel" transform that sends [c_0, c_1, ...] to [d_0, d_1, ...] where d_n = c_n^2 - c_{n+1}*c_{n-1}. - Henry Bottomley, Dec 12 2000
Surround numbers of an n X n square. - Jason Earls, Apr 16 2001
Numbers n such that 2*n + 2 is a perfect square. - Cino Hilliard, Dec 18 2003, Juri-Stepan Gerasimov, Apr 09 2016
The sums of the consecutive integer sequences 2n^2 to 2(n+1)^2-1 are cubes, as 2n^2 + ... + 2(n+1)^2-1 = (1/2)(2(n+1)^2 - 1 - 2n^2 + 1)(2(n+1)^2 - 1 + 2n^2) = (2n+1)^3. E.g., 2+3+4+5+6+7 = 27 = 3^3, then 8+9+10+...+17 = 125 = 5^3. - Andras Erszegi (erszegi.andras(AT)chello.hu), Apr 29 2005
X values (other than 0) of solutions to the equation 2*X^3 + 2*X^2 = Y^2. To find Y values: b(n) = 2n*(2*n^2 - 1). - Mohamed Bouhamida, Nov 06 2007
Average of the squares of two consecutive terms is also a square. In fact: (2*n^2 - 1)^2 + (2*(n+1)^2 - 1)^2 = 2*(2*n^2 + 2*n + 1)^2. - Matias Saucedo (solomatias(AT)yahoo.com.ar), Aug 18 2008
Equals row sums of triangle A143593 and binomial transform of [1, 6, 4, 0, 0, 0, ...] with n > 1. - Gary W. Adamson, Aug 26 2008
Start a spiral of square tiles. Trivially the first tile fits in a 1 X 1 square. 7 tiles fit in a 3 X 3 square, 17 tiles fit in a 5 X 5 square and so on. - Juhani Heino, Dec 13 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-2, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jan 26 2010
For each n > 0, the recursive series, formula S(b) = 6*S(b-1) - S(b-2) - 2*a(n) with S(0) = 4n^2-4n+1 and S(1) = 2n^2, has the property that every even term is a perfect square and every odd term is twice a perfect square. - Kenneth J Ramsey, Jul 18 2010
Fourth diagonal of A154685 for n > 2. - Vincenzo Librandi, Aug 07 2010
First integer of (2*n)^2 consecutive integers, where the last integer is 3 times the first + 1. As example, n = 2: term = 7; (2*n)^2 = 16; 7, 8, 9, ..., 20, 21, 22: 7*3 + 1 = 22. - Denis Borris, Nov 18 2012
Chebyshev polynomial of the first kind T(2,n). - Vincenzo Librandi, May 30 2014
For n > 0, number of possible positions of a 1 X 2 rectangle in a (n+1) X (n+2) rectangular integer lattice. - Andres Cicuttin, Apr 07 2016
This sequence also represents the best solution for Ripà's n_1 X n_2 X n_3 dots problem, for any 0 < n_1 = n_2 < n_3 = floor((3/2)*(n_1 - 1)) + 1. - Marco Ripà, Jul 23 2018

Examples

			a(0) = 0^2-1*1 = -1, a(1) = 1^2 - 4*0 = 1, a(2) = 2^2 - 9*1 = 7, etc.
a(4) = 31 = (1, 3, 3, 1) dot (1, 6, 4, 0) = (1 + 18 + 12 + 0). - _Gary W. Adamson_, Aug 29 2008
		

Crossrefs

Cf. A066049 (indices of prime terms)
Column 2 of array A188644 (starting at offset 1).

Programs

Formula

G.f.: (-1 + 4*x + x^2)/(1-x)^3. - Henry Bottomley, Dec 12 2000
a(n) = A119258(n+1,2) for n > 0. - Reinhard Zumkeller, May 11 2006
From Doug Bell, Mar 08 2009: (Start)
a(0) = -1,
a(n) = sqrt(A001844(n)^2 - A069074(n-1)),
a(n+1) = sqrt(A001844(n)^2 + A069074(n-1)) = sqrt(a(n)^2 + A069074(n-1)*2). (End)
a(n) + a(n+1) + 1 = (2n+1)^2. - Doug Bell, Mar 09 2009
a(n) = a(n-1) + 4*n - 2 (with a(0)=-1). - Vincenzo Librandi, Dec 25 2010
a(n) = A188653(2*n) for n > 0. - Reinhard Zumkeller, Apr 13 2011
a(n) = A162610(2*n-1,n) for n > 0. - Reinhard Zumkeller, Jan 19 2013
a(n) = ( Sum_{k=0..2} (C(n+k,3)-C(n+k-1,3))*(C(n+k,3)+C(n+k+1,3)) ) - (C(n+2,3)-C(n-1,3))*(C(n,3)+C(n+3,3)), for n > 3. - J. M. Bergot, Jun 16 2014
a(n) = j^2 + k^2 - 2 or 2*j*k if n >= 2 and j = n + sqrt(2)/2 and k = n - sqrt(2)/2. - Avi Friedlich, Mar 30 2015
a(n) = A002593(n)/n^2. - Bruce J. Nicholson, Apr 03 2017
a(n) = A000384(n) + n - 1. - Bruce J. Nicholson, Nov 12 2017
a(n)*a(n+k) + 2k^2 = m^2 (a perfect square), m = a(n) + (2n*k), for n>=1. - Ezhilarasu Velayutham, May 13 2019
From Amiram Eldar, Aug 10 2020: (Start)
Sum_{n>=1} 1/a(n) = 1/2 - sqrt(2)*Pi*cot(Pi/sqrt(2))/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi*csc(Pi/sqrt(2))/4 - 1/2. (End)
From Amiram Eldar, Feb 04 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(2))*csc(Pi/sqrt(2)).
Product_{n>=2} (1 - 1/a(n)) = (Pi/(4*sqrt(2)))*csc(Pi/sqrt(2)). (End)
a(n) = A003215(n) - A000217(n-2)*2. - Leo Tavares, Jun 29 2021
Let T(n) = n*(n+1)/2. Then a(n)^2 = T(2n-2)*T(2n+1) + n^2. - Charlie Marion, Feb 12 2023
E.g.f.: exp(x)*(2*x^2 + 2*x - 1). - Stefano Spezia, Jul 08 2023

A077586 a(n) = 2^(2^prime(n) - 1) - 1.

Original entry on oeis.org

7, 127, 2147483647, 170141183460469231731687303715884105727
Offset: 1

Views

Author

Henry Bottomley, Nov 07 2002

Keywords

Comments

First four terms are primes. Fifth (1.61585...*10^616), sixth (5.45374...*10^2465), seventh (2.007...*10^39456) and eighth (1.298...*10^157826) are not primes.
Note that a(n) divides 2^a(n)-2 for every n, so if a(n) is composite then a(n) is a Fermat pseudoprime to base 2; cf. A007013. - Thomas Ordowski, Apr 08 2016
A number MM(p) is prime iff M(p) = A000225(p) = 2^p-1 is a Mersenne prime exponent (A000043), which isn't possible unless p itself is also in A000043. Primes of this form are called double Mersenne primes MM(p). For all Mersenne exponents between 7 and 61, factors of MM(p) are known. The next candidate MM(61) is far too large to be merely stored on any existing hard drive (it would require 3*10^17 bytes), but a distributed search for factors of this and other MM(p) is ongoing, see the doublemersenne.org web site. - M. F. Hasler, Mar 05 2020

Examples

			a(3) = 2^(2^5 - 1) - 1 = 2^31 - 1 = 2147483647.
		

Crossrefs

Cf. A077585 (double Mersenne numbers), A000225 (Mersenne numbers), A001348 (ditto with prime indices), A000040 (primes).

Programs

Formula

a(n) = A077585(A000040(n)) = A000225(A001348(n)).

A070969 a(n) = 2^(2^n + 1) + 1.

Original entry on oeis.org

5, 9, 33, 513, 131073, 8589934593, 36893488147419103233, 680564733841876926926749214863536422913, 231584178474632390847141970017375815706539969331281128078915168015826259279873
Offset: 0

Views

Author

Anonymous, May 17 2002

Keywords

Examples

			a(0)=5 because 2^(2^0 + 1) + 1 = 2^(1 + 1) + 1 = 2^2 + 1 = 4 + 1 = 5.
		

Crossrefs

Programs

Extensions

Edited by Robert G. Wilson v, May 20 2002

A054868 Sum of bits of sum of bits of n: a(n) = wt(wt(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2
Offset: 0

Views

Author

Jeffrey Shallit, May 15 2000

Keywords

Examples

			a(127) = 3 since 127 in base 2 is 1111111, whose sum of bits is 7 and 7 in base 2 is 111, whose sum of bits is 3.
		

Crossrefs

Cf. A000120, A077585 (where records occur), A089224.

Programs

  • Haskell
    a054868 = a000120 . a000120  -- Reinhard Zumkeller, Mar 31 2015
    
  • Maple
    a:= n-> (w-> w(w(n)))(k-> add(i, i=Bits[Split](k))):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jul 04 2022
  • Mathematica
    a[n_] := DigitCount[DigitCount[n, 2, 1], 2, 1]; Array[a, 100, 0] (* Amiram Eldar, Jul 24 2023 *)
  • PARI
    a(n) = norml2(binary(norml2(binary(n))))  \\ Michel Marcus, May 25 2013
    
  • PARI
    a(n) = hammingweight(hammingweight(n)); \\ Ruud H.G. van Tol, Jul 03 2024
    
  • Python
    def a(n): return n.bit_count().bit_count()
    print([a(n) for n in range(99)]) # Michael S. Branicky, Jul 04 2022

Formula

a(n) = A000120(A000120(n)).
a(2^(2^n-1)-1) = a(A077585(n)) = n (first occurrence). - Alois P. Heinz, Jul 04 2022

A135085 a(n) = A000110(2^n).

Original entry on oeis.org

1, 2, 15, 4140, 10480142147, 128064670049908713818925644, 172134143357358850934369963665272571125557575184049758045339873395
Offset: 0

Views

Author

Thomas Wieder, Nov 18 2007, Nov 19 2007

Keywords

Comments

Number of set partitions of all subsets of a set, Bell(2^n).

Examples

			Let S={1,2,3,...,n} be a set of n elements and let SU be the set of all subsets of S including the empty set. The number of elements of SU is |SU| = 2^n. Now form all possible set partitions from SU including the empty set. This gives a set W and its number of elements is |W| = sum((stirling2(2^n,k)), k=0..2^n) = Bell(2^n).
For S={1,2} we have SU = { {}, {1}, {2}, {1,2} } and W =
{
{{{}}, {1}, {2}, {1, 2}},
{{2}, {1, 2}, {{}, {1}}},
{{1}, {1, 2}, {{}, {2}}},
{{1}, {2}, {{}, {1, 2}}},
{{{}}, {1, 2}, {{1}, {2}}},
{{{1}, {2}}, {{}, {1, 2}}},
{{1, 2}, {{}, {1}, {2}}},
{{{}}, {2}, {{1}, {1, 2}}},
{{{1}, {1, 2}}, {{}, {2}}},
{{2}, {{}, {1}, {1, 2}}},
{{{}}, {1}, {{2}, {1, 2}}},
{{{2}, {1, 2}}, {{}, {1}}},
{{1}, {{}, {2}, {1, 2}}},
{{{}}, {{1}, {2}, {1, 2}}},
{{{}, {1}, {2}, {1, 2}}}
}
and |W| = 15.
		

Crossrefs

Programs

  • Maple
    ZahlDerMengenAusMengeDerZerlegungenEinerMenge:=proc() local n,nend,arg,k,w; nend:=5; for n from 0 to nend do arg:=2^n; w[n]:=sum((stirling2(arg,k)), k=0..arg); od; print(w[0],w[1],w[2],w[3],w[4],w[5],w[6],w[7],w[8],w[9],w[10]); end proc;
  • Mathematica
    Table[BellB[2^n],{n,0,10}] (* Geoffrey Critzer, Jan 03 2014 *)
  • Python
    from sympy import bell
    def A135085(n): return bell(2**n) # Chai Wah Wu, Jun 22 2022

Formula

a(n) = |W| = Sum_{k=0..2^n} Stirling2(2^n,k) = Bell(2^n), where Stirling2(n) is the Stirling number of the second kind and Bell(n) is the Bell number.
a(n) = exp(-1) * Sum_{k>=0} k^(2^n)/k!. - Ilya Gutkovskiy, Jun 13 2019

A135084 a(n) = A000110(2^n-1).

Original entry on oeis.org

1, 5, 877, 1382958545, 10293358946226376485095653, 8250771700405624889912456724304738028450190134337110943817172961
Offset: 1

Views

Author

Thomas Wieder, Nov 18 2007

Keywords

Comments

Number of set partitions of all nonempty subsets of a set, Bell(2^n-1).

Examples

			Let S={1,2,3,...,n} be a set of n elements and let
SU be the set of all nonempty subsets of S. The number of elements of SU is |SU| = 2^n-1. Now form all possible set partitions from SU where the empty set is excluded. This gives a set W and its number of elements is |W| = Sum_{k=1..2^n-1} Stirling2(2^n-1,k).
For S={1,2} we have SU = { {1}, {2}, {1,2} } and W =
{
{{1}, {2}, {1, 2}},
{{1, 2}, {{1}, {2}}},
{{2}, {{1}, {1, 2}}},
{{1}, {{2}, {1, 2}}},
{{{1}, {2}, {1, 2}}}
}
and |W| = 5.
		

Crossrefs

Programs

  • Maple
    ZahlDerMengenAusMengeDerZerlegungenEinerMenge:=proc() local n,nend,arg,k,w; nend:=5; for n from 1 to nend do arg:=2^n-1; w[n]:=sum((stirling2(arg,k)), k=1..arg); od; print(w[1],w[2],w[3],w[4],w[5],w[6],w[7],w[8],w[9],w[10]); end proc;
  • Mathematica
    BellB[2^Range[6]-1] (* Harvey P. Dale, Jul 22 2012 *)
  • Python
    from sympy import bell
    def A135084(n): return bell(2**n-1) # Chai Wah Wu, Jun 22 2022

Formula

a(n) = Sum_{k=1..2^n-1} Stirling2(2^n-1,k) = Bell(2^n-1), where Stirling2(n, k) is the Stirling number of the second kind and Bell(n) is the Bell number.

A263686 Smallest prime factor of double Mersenne numbers.

Original entry on oeis.org

7, 127, 2147483647, 170141183460469231731687303715884105727, 338193759479, 231733529, 62914441, 295257526626031
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 23 2015

Keywords

Comments

A double Mersenne number is a Mersenne number of the form 2^(2^p - 1) - 1, where p is a Mersenne exponent (A000043).
From M. F. Hasler, Feb 28 2025: (Start)
The prime factors of Mersenne numbers 2^q - 1 must be of the form 2*q*k + 1.
The four smallest double Mersenne numbers (p = 2, 3, 5, 7 => q = 3, 7, 31, 127) are prime, so their smallest prime factor is equal to themselves, a(n) = M(q). This is equivalent to k = (2^(q-1)-1)/q, which is almost as large as M(q) itself: k = 1, 9 and 34636833 for the first three terms, and for q = 127, k has just three digits less than M(q) = a(4) itself. The prime p = 11 is not a Mersenne exponent.
The fifth term, a(5) = 2*(2^13-1)*k + 1 with k = 20644229 (which is prime) is the first proper divisor of the respective M(q), as are the next three, corresponding to p = 17, 19 and 31.
For p = 61, M(q) has 694127911065419642 digits, and so far no factor is known, but it is known that it has no factor less than 10^36. (End)

Crossrefs

Cf. A000043, A000668, A001348, A020639, A049479, A077586, A122094. Subsequence of A016047. Subsequence of A309130.

Programs

  • PARI
    forprime(p=2,,q=2^p-1; !ispseudoprime(q) && next(); if(ispseudoprime(2^q-1), print1(2^q-1,", ");next()); forstep(r=2*q+1,+oo,2*q, !ispseudoprime(r) && next(); if(Mod(2,r)^q-1 == 0, print1(r,", ");next(2)))) \\ Jeppe Stig Nielsen, Aug 28 2019

Formula

a(n) = spf(MM(A000043(n))) = A049479(A000668(n)), where spf = A020639 is the smallest prime factor, A049479 = spf o M, M(p) = 2^p-1 = A000225(p), MM = M o M = A077585, A000668(n) = M(A000043(n)), A000043 are the Mersenne prime exponents. - M. F. Hasler, Mar 01 2025

A103902 Mersenne primes p such that the Mersenne number M(p) = 2^p - 1 is composite.

Original entry on oeis.org

8191, 131071, 524287, 2147483647
Offset: 1

Views

Author

Jonathan Sondow, Feb 20 2005

Keywords

Comments

Only four terms are known.
The first four Mersenne primes (p=2^q-1 in A000668) are double Mersenne primes, i.e., in A103901. The next four yield a composite M(p) and therefore are in this sequence. The next larger Mersenne prime p = A000668(9) has already 19 digits and is much too large to enable us, as of today, to test the primality of 2^p-1 (which would require over 10^8 gigabytes just to be stored in binary). This explains that only 4 terms are known of this sequence and of A103901; for all the 30+ remaining members of A000668 it is not known whether they belong to A103901 or to this sequence A103902. - M. F. Hasler, Jan 21 2015

Examples

			M(13) = 8191 is a Mersenne prime and M(1891) is composite, so 1891 is a member.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer-Verlag, NY, 2004, Sec. A3.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford Univ. Press, 1954, p. 16.
  • P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, NY, 1996, Chap. 2, Sec. VII.

Crossrefs

Programs

Showing 1-10 of 17 results. Next