A220161 a(n) = 1 + 2^(2^n) + 2^(2^(n+1)).
7, 21, 273, 65793, 4295032833, 18446744078004518913, 340282366920938463481821351505477763073, 115792089237316195423570985008687907853610267032561502502920958615344897851393
Offset: 0
Keywords
References
- Arthur Engel, Problem-Solving Strategies, Springer, 1998, pages 121-122 (E3, said to be a "recent competition problem from the former USSR").
- W. Sierpiński, 250 Problems in Elementary Number Theory. New York: American Elsevier, 1970. Problem #123.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10
- K. Zelator, On a theorem on sums of the form 1+2^(2^n)+2^(2^n+1)+...+2^(2^n+m) and a result linking Fermat with Mersenne numbers, arXiv:0806.1514 [math.GM], 2008.
Programs
-
Magma
[1 + 2^(2^n) + 2^(2^(n+1)): n in [0..10]]; // G. C. Greubel, Aug 10 2018
-
Mathematica
Table[1+2^(2^n)+2^(2^(n+1)),{n,0,7}] (* Harvey P. Dale, Dec 16 2015 *)
-
Maxima
A220161(n):=1 + 2^(2^n) + 2^(2^(n+1))$ makelist(A220161(n),n,0,10); /* Martin Ettl, Dec 10 2012 */
-
PARI
vector(10, n, n--; 1 + 2^(2^n) + 2^(2^(n+1))) \\ G. C. Greubel, Aug 10 2018
-
Python
def a(n): return 1 + 2**(2**n) + 2**(2**(n+1)) print([a(n) for n in range(8)]) # Michael S. Branicky, Jul 21 2021
Formula
A070969(n) = sqrt(4*a(n) - 3). a(n+1) = a(n) * (1 + a(n) - A070969(n)) = a(n) * (1 + A087046(n+2)) hence a(n) divides a(n+1). - Michael Somos, Dec 10 2012
Comments