cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A220161 a(n) = 1 + 2^(2^n) + 2^(2^(n+1)).

Original entry on oeis.org

7, 21, 273, 65793, 4295032833, 18446744078004518913, 340282366920938463481821351505477763073, 115792089237316195423570985008687907853610267032561502502920958615344897851393
Offset: 0

Views

Author

Michel Marcus, Dec 06 2012

Keywords

Comments

For n >= 1, W. Sierpiński proves that a(n) is divisible by 21.
For n >= 1, A. Engel shows that a(n) = a(n-1) * A220294(n-1). - Hans Havermann, Mar 07 2015

References

  • Arthur Engel, Problem-Solving Strategies, Springer, 1998, pages 121-122 (E3, said to be a "recent competition problem from the former USSR").
  • W. Sierpiński, 250 Problems in Elementary Number Theory. New York: American Elsevier, 1970. Problem #123.

Crossrefs

Programs

  • Magma
    [1 + 2^(2^n) + 2^(2^(n+1)): n in [0..10]]; // G. C. Greubel, Aug 10 2018
    
  • Mathematica
    Table[1+2^(2^n)+2^(2^(n+1)),{n,0,7}] (* Harvey P. Dale, Dec 16 2015 *)
  • Maxima
    A220161(n):=1 + 2^(2^n) + 2^(2^(n+1))$ makelist(A220161(n),n,0,10); /* Martin Ettl, Dec 10 2012 */
    
  • PARI
    vector(10, n, n--; 1 + 2^(2^n) + 2^(2^(n+1))) \\ G. C. Greubel, Aug 10 2018
    
  • Python
    def a(n): return 1 + 2**(2**n) + 2**(2**(n+1))
    print([a(n) for n in range(8)]) # Michael S. Branicky, Jul 21 2021

Formula

a(n) = A000215(n+1) + A000215(n) - 1.
A070969(n) = sqrt(4*a(n) - 3). a(n+1) = a(n) * (1 + a(n) - A070969(n)) = a(n) * (1 + A087046(n+2)) hence a(n) divides a(n+1). - Michael Somos, Dec 10 2012
a(n) = A002061(A000215(n)). - Pontus von Brömssen, Aug 31 2021

A006485 a(n) = (2^(2^n + 1) + 1)/3.

Original entry on oeis.org

3, 11, 171, 43691, 2863311531, 12297829382473034411, 226854911280625642308916404954512140971, 77194726158210796949047323339125271902179989777093709359638389338608753093291
Offset: 1

Views

Author

Dennis S. Kluk (mathemagician(AT)ameritech.net)

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = A001045(2^n+1) = (3*a(n-1)^2 + 1)/2 - a(n-1). - Michael Somos, Mar 30 2020
a(n) = A070969(n)/3. - Alois P. Heinz, Mar 28 2023

A109384 a(n) = 2^(2^(n+2)+1).

Original entry on oeis.org

32, 512, 131072, 8589934592, 36893488147419103232, 680564733841876926926749214863536422912, 231584178474632390847141970017375815706539969331281128078915168015826259279872
Offset: 0

Views

Author

Creighton Dement, Sep 02 2005

Keywords

Crossrefs

Cf. A070969.

Programs

Formula

a(n) = A070969(n+2)-1.

A101329 2^(2^(2^x)+1)-1 = M(F(x)) == Mersenne(Fermat(x)).

Original entry on oeis.org

7, 31, 131071, 231584178474632390847141970017375815706539969331281128078915168015826259279871
Offset: 0

Views

Author

Jorge Coveiro, Dec 24 2004

Keywords

Comments

Mersenne-Fermat numbers.

Examples

			M(F(0))=7
M(F(1))=31
M(F(2))=131071
M(F(3))=231584178474632390847141970017375815706539969331281128078915168015826259279871
		

Programs

  • PARI
    for(x=0,3,print(2^(2^(2^x)+1)-1))

Formula

a(n) = A070969(2^n)-2. - R. J. Mathar, Apr 22 2007
Showing 1-4 of 4 results.