A309130
Smallest prime factor of A077586(n).
Original entry on oeis.org
7, 127, 2147483647, 170141183460469231731687303715884105727, 47, 338193759479, 231733529, 62914441, 2351, 1399, 295257526626031, 18287, 106937, 863, 4703, 138863, 22590223644617
Offset: 1
A077585
a(n) = 2^(2^n - 1) - 1.
Original entry on oeis.org
0, 1, 7, 127, 32767, 2147483647, 9223372036854775807, 170141183460469231731687303715884105727, 57896044618658097711785492504343953926634992332820282019728792003956564819967
Offset: 0
a(5) = 2^(2^5 - 1) - 1 = 2^31 - 1 = 2147483647.
A103901
Mersenne primes p such that M(p) = 2^p - 1 is also a (Mersenne) prime.
Original entry on oeis.org
2^2 - 1 = 3 and 2^3 - 1 = 7 are Mersenne primes, so 3 is a member.
- R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer-Verlag, NY, 2004, Sec. A3.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford Univ. Press, 1954, p. 16.
- P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, NY, 1996, Chap. 2, Sec. VII.
A263686
Smallest prime factor of double Mersenne numbers.
Original entry on oeis.org
7, 127, 2147483647, 170141183460469231731687303715884105727, 338193759479, 231733529, 62914441, 295257526626031
Offset: 1
-
forprime(p=2,,q=2^p-1; !ispseudoprime(q) && next(); if(ispseudoprime(2^q-1), print1(2^q-1,", ");next()); forstep(r=2*q+1,+oo,2*q, !ispseudoprime(r) && next(); if(Mod(2,r)^q-1 == 0, print1(r,", ");next(2)))) \\ Jeppe Stig Nielsen, Aug 28 2019
A103902
Mersenne primes p such that the Mersenne number M(p) = 2^p - 1 is composite.
Original entry on oeis.org
8191, 131071, 524287, 2147483647
Offset: 1
M(13) = 8191 is a Mersenne prime and M(1891) is composite, so 1891 is a member.
- R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer-Verlag, NY, 2004, Sec. A3.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford Univ. Press, 1954, p. 16.
- P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, NY, 1996, Chap. 2, Sec. VII.
Original entry on oeis.org
7, 127, 2147483647, 170141183460469231731687303715884105727
Offset: 1
-
forprime(p=1, 11, if(ispseudoprime(2^p-1), print1(2^(2^p-1)-1, ", ")))
Showing 1-6 of 6 results.
Comments