cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077588 Maximum number of regions into which the plane is divided by n triangles.

Original entry on oeis.org

1, 2, 8, 20, 38, 62, 92, 128, 170, 218, 272, 332, 398, 470, 548, 632, 722, 818, 920, 1028, 1142, 1262, 1388, 1520, 1658, 1802, 1952, 2108, 2270, 2438, 2612, 2792, 2978, 3170, 3368, 3572, 3782, 3998, 4220, 4448, 4682, 4922, 5168, 5420, 5678, 5942, 6212, 6488
Offset: 0

Views

Author

Joshua Zucker and the Castilleja School MathCounts club, Nov 07 2002

Keywords

Examples

			a(2) = 8 because a Star of David divides the plane into 8 regions: 6 triangles at the vertices, the interior hexagon, and the exterior.
		

Crossrefs

a(n) = A096777(3*n-1) for n > 0. - Reinhard Zumkeller, Dec 29 2007
For n > 0, a(n) = 2 * A005448(n). - Jon Perry, Apr 14 2013
a(n) = A242658(n) for n > 0. - Eric W. Weisstein, Nov 29 2017

Programs

Formula

a(n) = 3n^2 - 3n + 2 for n > 0.
Proof (from Joshua Zucker and N. J. A. Sloane, Dec 01 2017)
Represent the configuration of n triangles by a planar graph with a node for each vertex of the triangles and for each intersection point. Let there be v_n nodes and e_n edges. By classical graph theory, a(n) = e_n - v_n + 2. When we go from n to n+1 triangles, each side of the new triangle can meet each side of the existing triangles at most twice, so Dv_n := v_{n+1}-v_n <= 6n.
Each of these intersection points increases the number of edges in the graph by 2, so De_n := e_{n+1}-e_n = 3 + 2*Dv_n, Da_n := a(n+1)-a(n) = 3 + Dv_n <= 3+6*n.
These upper bounds can be achieved by taking 3n points equally spaced around a circle and drawing n concentric overlapping equilateral triangles in the obvious way, and we achieve a(n) = 3n^2 - 3n + 2 (and v_n = 3n^2, e_n = 3n(2n-1)) for n>0. QED
a(n) is the nearest integer to (Sum_{k>=n} 1/k^2)/(Sum_{k>=n} 1/k^4). - Benoit Cloitre, Jun 12 2003
a(n) = a(n-1) + 6*n - 6 (with a(1) = 2). - Vincenzo Librandi, Dec 07 2010
For n > 0, a(n) = A002061(n-1) + A056220(n); and for n > 1, a(n) = A002061(n+1) + A056220(n-1). - Bruce J. Nicholson, Sep 22 2017