cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 49 results. Next

A077775 Odd numbers k such that (10^k - 1)/3 - 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime) of the form 3...313...3.

Original entry on oeis.org

3, 7, 15, 123, 181, 185, 539, 597, 643, 743, 1553, 3135, 4769, 5133, 6177, 11733, 16103, 18997, 25271, 49025, 65043, 87965
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
a(23) > 2*10^5. - Robert Price, Jan 29 2016
Primes of the form (10^k-1)/3 - 2*10^floor(k/2) are obtained for k in (2, 3, 6, 7, 8, 10, 15, 22, 34, 123, 126, 144, 181, 185, 198, 534, 539, 597, 606, ...). For example (10^2 - 1)/3 - 2*10^1 = 13 is also prime. However, for even k the result is not palindromic. See A077775-A077798, A107123-A107127 for PWP's with digits other than 3 and 1. - M. F. Hasler, Mar 03 2019

Examples

			a(3) = 15 corresponds to the prime (10^15 - 1)/3 - 2*10^7 = 333333313333333.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[(10^n - 6*10^Floor[n/2] - 1)/3], Print[n]], {n, 3, 49100, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
  • PARI
    is(n)=bittest(n,0)&&ispseudoprime(10^n\3-2*10^(n\2)) \\ M. F. Hasler, Mar 03 2019

Formula

a(n) = 2*A183174(n) + 1.

Extensions

a(21)-a(22) from Robert Price, Jan 29 2016
a(21) corrected by Robert Price, Feb 03 2016
Name corrected by Jon E. Schoenfield, Oct 31 2018
Name edited by M. F. Hasler, Mar 03 2019

A183187 Numbers k such that 10^(2k+1)-10^k-1 is prime.

Original entry on oeis.org

26, 378, 1246, 1798, 2917, 23034, 47509, 52140, 67404
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

Comments

944264 is a term but its position is not known. - Jeppe Stig Nielsen, Jan 12 2024
a(10) > 300000. - Serge Batalov, Jan 17 2024

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[10^(2n + 1) - 10^n - 1], Print[n]], {n, 3000}]
  • PARI
    for(n=1,1e3,if(ispseudoprime(10^(2*n+1)-10^n-1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = (A077794(n)-1)/2.

A115073 Numbers k such that 10^(2*k+1)-7*10^k-1 is prime.

Original entry on oeis.org

1, 8, 9, 352, 530, 697, 1315, 1918, 2874, 5876, 6768, 62938, 134739
Offset: 1

Views

Author

N. J. A. Sloane, Mar 03 2006

Keywords

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[10^(2n + 1) - 7*10^n - 1], Print[n]], {n, 3000}]
  • PARI
    for(n=0,1e4,if(ispseudoprime(t=10^(2*n+1)-7*10^n-1),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = (A077778(n)-1)/2.

Extensions

Edited by Ray Chandler, Dec 28 2010
Added two more terms from PWP table, by Patrick De Geest, Nov 05 2014

A107123 Numbers k such that (10^(2*k+1)+18*10^k-1)/9 is prime.

Original entry on oeis.org

0, 1, 2, 19, 97, 9818
Offset: 1

Views

Author

Farideh Firoozbakht, May 19 2005

Keywords

Comments

A number k is in the sequence iff the palindromic number 1(k).3.1(k) is prime (1(k) means k copies of 1; dot between numbers means concatenation). If k is a positive term of the sequence then k is not of the form 3m, 6m+4, 12m+10, 28m+5, 28m+8, etc. (the proof is easy).
The palindromic number 1(k).2.1(k) is never prime for k > 0 because it is (1.0(k-1).1)*(1(k+1)). - Robert Israel, Jun 11 2015
a(7) > 10^5. - Robert Price, Apr 02 2016

Examples

			19 is in the sequence because the palindromic number (10^(2*19+1)+18*10^19-1)/9 = 1(19).3.1(19) = 111111111111111111131111111111111111111 is prime.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Maple
    select(n -> isprime((10^(2*n+1)+18*10^n-1)/9), [$0..100]); # Robert Israel, Jun 11 2015
  • Mathematica
    Do[If[PrimeQ[(10^(2n + 1) + 18*10^n - 1)/9], Print[n]], {n, 2500}]
  • PARI
    for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+18*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = (A077779(n-1)-1)/2, for n > 1. [Corrected by M. F. Hasler, Feb 06 2020]

Extensions

Edited by Ray Chandler, Dec 28 2010

A107127 Numbers n such that (10^(2n+1)+54*10^n-1)/9 is prime.

Original entry on oeis.org

0, 3, 33, 311, 2933, 22235, 39165, 41585
Offset: 1

Views

Author

Farideh Firoozbakht, May 19 2005

Keywords

Comments

n is in the sequence iff the palindromic number 1(n).7.1(n) is prime (dot between numbers means concatenation). If n is in the sequence then n is not of the forms 3m+1, 6m, 6m+2, 7m+2, 16m+9, 16m+14, 18m+1, 18m+7, 22m+13, 22m+19, etc. (the proof is easy).
a(9) > 10^5. - Robert Price, Apr 30 2017

Examples

			3 is in the sequence because (10^(2*3+1)+54*10^3-1)/9=1(3).7.1(3)=1117111 is prime.
2933 is in the sequence because (10^(2*2933+1)+54*10^2933-1)/9=1(2933).7.1(2933) is prime.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(10^(2n + 1) + 54*10^n - 1)/9], Print[n]], {n, 3250}]
  • PARI
    for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+54*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = (A077789(n)-1)/2.

Extensions

Edited by Ray Chandler, Dec 28 2010
a(6)-a(8) from Robert Price, Apr 30 2017

A107648 Numbers n such that (10^(2n+1)+63*10^n-1)/9 is prime.

Original entry on oeis.org

1, 4, 6, 7, 384, 666, 675, 3165, 131020
Offset: 1

Views

Author

Farideh Firoozbakht, May 19 2005

Keywords

Comments

n is in the sequence iff the palindromic number 1(n).8.1(n) is prime (dot between numbers means concatenation). Let f(n)=(10^(2n+1)+63*10^n-1)/9 then for all nonnegative integers m we have: I. 3 divides f(3m+2) II. 19 divides f(18m+13) III. 29 divides f(28*m+16) & 29 divides f(28*m+25) IV. 31 divides f(30*m+2) & 31 divides f(30*m+17) V. 41 divides f(5m+3), etc. So if n is in the sequence then n is not of the forms 3m+2, 18m+13, 28m+16 28m+25, 30m+2, 30m+17, 5m+3, etc.
a(9) > 10^5. - Robert Price, Oct 30 2017

Examples

			7 is in the sequence because (10^15+63*10^7-1)/9=1(7).8.1(7)=111111181111111 is prime.
666 is in the sequence because (10^(2*666+1)+63*10^666-1)/9=1(666).8.1(666) is prime.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991, p. 141.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(10^(2n + 1) + 63*10^n - 1)/9], Print[n]], {n, 4000}]
  • PARI
    for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+63*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = (A077791(n)-1)/2.

Extensions

Edited by Ray Chandler, Dec 28 2010
a(9) from Robert Price, Aug 03 2024

A107649 Numbers n such that (10^(2n+1)+72*10^n-1)/9 is prime.

Original entry on oeis.org

1, 4, 26, 187, 226, 874, 13309, 34016, 42589
Offset: 1

Views

Author

Farideh Firoozbakht, May 19 2005

Keywords

Comments

n is in the sequence iff the palindromic number 1(n).9.1(n) is prime (dot between numbers means concatenation). If n is in the sequence then n is not of the forms 3m, 6m+5, 22m+3, 22m+7, etc. (the proof is easy).
a(10) > 200000. - _Robert Price, Jan 30 2025

Examples

			26 is in the sequence because (10^(2*26+1)+72*10^26-1)/9=1(26).9.1(26)
= 11111111111111111111111111911111111111111111111111111 is prime.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(10^(2n + 1) + 72*10^n - 1)/9], Print[n]], {n, 3000}]
    prQ[n_]:=Module[{c=PadRight[{},n,1]},PrimeQ[FromDigits[Join[c,{9},c]]]]; Select[Range[13500],prQ] (* Harvey P. Dale, Jan 19 2014 *)
  • PARI
    for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+72*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = (A077795(n)-1)/2.

Extensions

Edited by Ray Chandler, Dec 28 2010
a(8)-a(9) from Robert Price, Sep 28 2017

A183174 Numbers k such that (10^(2k+1) - 6*10^k - 1)/3 is prime.

Original entry on oeis.org

1, 3, 7, 61, 90, 92, 269, 298, 321, 371, 776, 1567, 2384, 2566, 3088, 5866, 8051, 9498, 12635, 24512, 32521, 43982
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

Comments

a(23) > 10^5. - Robert Price, Jan 29 2016

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(10^(2n + 1) - 6*10^n - 1)/3], Print[n]], {n, 3000}]
  • PARI
    for(n=1,1e3,if(ispseudoprime((10^(2*n+1)-6*10^n-1)/3),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = (A077775(n) - 1)/2.

Extensions

a(21)-a(22) from Robert Price, Jan 29 2016

A332118 a(n) = (10^(2n+1) - 1)/9 + 7*10^n.

Original entry on oeis.org

8, 181, 11811, 1118111, 111181111, 11111811111, 1111118111111, 111111181111111, 11111111811111111, 1111111118111111111, 111111111181111111111, 11111111111811111111111, 1111111111118111111111111, 111111111111181111111111111, 11111111111111811111111111111, 1111111111111118111111111111111
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

See A107648 = {1, 4, 6, 7, 384, 666, ...} for the indices of primes.

Crossrefs

Cf. (A077791-1)/2 = A107648: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes), A077798 (palindromic wing primes), A088281 (primes 1..1x1..1), A068160 (smallest of given length), A053701 (vertically symmetric numbers).
Cf. A332128 .. A332178, A181965 (variants with different repeated digit 2, ..., 9).
Cf. A332112 .. A332119 (variants with different middle digit 2, ..., 9).

Programs

  • Maple
    A332118 := n -> (10^(2*n+1)-1)/9+7*10^n;
  • Mathematica
    Array[(10^(2 # + 1)-1)/9 + 7*10^# &, 15, 0]
  • PARI
    apply( {A332118(n)=10^(n*2+1)\9+7*10^n}, [0..15])
    
  • Python
    def A332118(n): return 10**(n*2+1)//9+7*10**n

Formula

a(n) = A138148(n) + 8*10^n = A002275(2n+1) + 7*10^n.
G.f.: (8 - 707*x + 600*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A077776 Numbers k such that (10^k - 1) - 8*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).

Original entry on oeis.org

3, 11, 27, 87, 339, 363, 3159, 36155, 45305, 314727
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.

Examples

			27 is a term because (10^27 - 1) - 8*10^13 = 999999999999919999999999999.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[10^n - 8*10^Floor[n/2] - 1], Print[n]], {n, 3, 1000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)

Formula

a(n) = 2*A183184(n) + 1.

Extensions

One more term from PWP table added by Patrick De Geest, Nov 05 2014
Name corrected by Jon E. Schoenfield, Oct 31 2018
Showing 1-10 of 49 results. Next