A077775
Odd numbers k such that (10^k - 1)/3 - 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime) of the form 3...313...3.
Original entry on oeis.org
3, 7, 15, 123, 181, 185, 539, 597, 643, 743, 1553, 3135, 4769, 5133, 6177, 11733, 16103, 18997, 25271, 49025, 65043, 87965
Offset: 1
a(3) = 15 corresponds to the prime (10^15 - 1)/3 - 2*10^7 = 333333313333333.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(10^n - 6*10^Floor[n/2] - 1)/3], Print[n]], {n, 3, 49100, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
-
is(n)=bittest(n,0)&&ispseudoprime(10^n\3-2*10^(n\2)) \\ M. F. Hasler, Mar 03 2019
A183187
Numbers k such that 10^(2k+1)-10^k-1 is prime.
Original entry on oeis.org
26, 378, 1246, 1798, 2917, 23034, 47509, 52140, 67404
Offset: 1
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[10^(2n + 1) - 10^n - 1], Print[n]], {n, 3000}]
-
for(n=1,1e3,if(ispseudoprime(10^(2*n+1)-10^n-1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011
A115073
Numbers k such that 10^(2*k+1)-7*10^k-1 is prime.
Original entry on oeis.org
1, 8, 9, 352, 530, 697, 1315, 1918, 2874, 5876, 6768, 62938, 134739
Offset: 1
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[10^(2n + 1) - 7*10^n - 1], Print[n]], {n, 3000}]
-
for(n=0,1e4,if(ispseudoprime(t=10^(2*n+1)-7*10^n-1),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
A107123
Numbers k such that (10^(2*k+1)+18*10^k-1)/9 is prime.
Original entry on oeis.org
0, 1, 2, 19, 97, 9818
Offset: 1
19 is in the sequence because the palindromic number (10^(2*19+1)+18*10^19-1)/9 = 1(19).3.1(19) = 111111111111111111131111111111111111111 is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
select(n -> isprime((10^(2*n+1)+18*10^n-1)/9), [$0..100]); # Robert Israel, Jun 11 2015
-
Do[If[PrimeQ[(10^(2n + 1) + 18*10^n - 1)/9], Print[n]], {n, 2500}]
-
for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+18*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
A107127
Numbers n such that (10^(2n+1)+54*10^n-1)/9 is prime.
Original entry on oeis.org
0, 3, 33, 311, 2933, 22235, 39165, 41585
Offset: 1
3 is in the sequence because (10^(2*3+1)+54*10^3-1)/9=1(3).7.1(3)=1117111 is prime.
2933 is in the sequence because (10^(2*2933+1)+54*10^2933-1)/9=1(2933).7.1(2933) is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(10^(2n + 1) + 54*10^n - 1)/9], Print[n]], {n, 3250}]
-
for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+54*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
A107648
Numbers n such that (10^(2n+1)+63*10^n-1)/9 is prime.
Original entry on oeis.org
1, 4, 6, 7, 384, 666, 675, 3165, 131020
Offset: 1
7 is in the sequence because (10^15+63*10^7-1)/9=1(7).8.1(7)=111111181111111 is prime.
666 is in the sequence because (10^(2*666+1)+63*10^666-1)/9=1(666).8.1(666) is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
- Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991, p. 141.
-
Do[If[PrimeQ[(10^(2n + 1) + 63*10^n - 1)/9], Print[n]], {n, 4000}]
-
for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+63*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
A107649
Numbers n such that (10^(2n+1)+72*10^n-1)/9 is prime.
Original entry on oeis.org
1, 4, 26, 187, 226, 874, 13309, 34016, 42589
Offset: 1
26 is in the sequence because (10^(2*26+1)+72*10^26-1)/9=1(26).9.1(26)
= 11111111111111111111111111911111111111111111111111111 is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(10^(2n + 1) + 72*10^n - 1)/9], Print[n]], {n, 3000}]
prQ[n_]:=Module[{c=PadRight[{},n,1]},PrimeQ[FromDigits[Join[c,{9},c]]]]; Select[Range[13500],prQ] (* Harvey P. Dale, Jan 19 2014 *)
-
for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+72*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
A077776
Numbers k such that (10^k - 1) - 8*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 11, 27, 87, 339, 363, 3159, 36155, 45305, 314727
Offset: 1
27 is a term because (10^27 - 1) - 8*10^13 = 999999999999919999999999999.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[10^n - 8*10^Floor[n/2] - 1], Print[n]], {n, 3, 1000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A107124
Numbers k such that (10^(2*k+1)+27*10^k-1)/9 is prime.
Original entry on oeis.org
2, 3, 32, 45, 1544
Offset: 1
32 is in the sequence because the palindromic number (10^(2*32+1)+27*10^32-1)/9 = 1(32).4.1(32) =
11111111111111111111111111111111411111111111111111111111111111111 is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(10^(2n + 1) + 27*10^n - 1)/9], Print[n]], {n, 2200}]
Select[Range[1600],PrimeQ[FromDigits[Join[PadRight[{},#,1],{4},PadRight[ {},#,1]]]]&] (* Harvey P. Dale, Aug 01 2017 *)
-
is(n)=ispseudoprime((10^(2*n+1)+27*10^n-1)/9) \\ Charles R Greathouse IV, May 22 2017
A183184
Numbers n such that 10^(2n+1)-8*10^n-1 is prime.
Original entry on oeis.org
1, 5, 13, 43, 169, 181, 1579, 18077, 22652, 157363
Offset: 1
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[10^(2n + 1) - 8*10^n - 1], Print[n]], {n, 3000}]
-
is(n)=ispseudoprime(10^(2*n+1)-8*10^n-1) \\ Charles R Greathouse IV, Jun 13 2017
Showing 1-10 of 44 results.
Comments