cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A097179 Triangle read by rows in which row n gives coefficients of polynomial R_n(y) that satisfies R_n(1/2) = 4^n, where R_n(y) forms the initial (n+1) terms of g.f. A077860(y)^(n+1).

Original entry on oeis.org

1, 1, 6, 1, 9, 42, 1, 12, 74, 308, 1, 15, 115, 595, 2310, 1, 18, 165, 1020, 4746, 17556, 1, 21, 224, 1610, 8722, 37730, 134596, 1, 24, 292, 2392, 14778, 73080, 299508, 1038312, 1, 27, 369, 3393, 23535, 130851, 604707, 2376099, 8046918
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2004

Keywords

Comments

Row sums form A097180. Diagonal is A004982. Ratio of g.f.s of any two adjacent diagonals equals g.f. of A048779, where the g.f.s satisfy: A077860(x*A048779(x)) = A048779(x).

Examples

			Row polynomials evaluated at y=1/2 equals powers of 4:
4^1 = 1 + 6/2;
4^2 = 1 + 9/2 + 42/2^2;
4^3 = 1 + 12/2 + 74/2^2 + 308/2^3;
4^4 = 1 + 15/2 + 115/2^2 + 595/2^3 + 2310/2^4;
where A077860(y)^(n+1) has the same initial terms as the n-th row:
A077860(y) = 1 +3*y +5*y^2 +5*y^3 +1*y^4 -7*y^5 -15*y^6 -15*y^7 +...
A077860(y)^2 = 1 + 6*y +...
A077860(y)^3 = 1 + 9*y + 42*y^2 +...
A077860(y)^4 = 1 + 12*y + 74*y^2 + 308*y^3 +...
A077860(y)^5 = 1 + 15*y + 115*y^2 + 595*y^3 + 2310*y^4 +...
Rows begin with n=0:
  1;
  1,  6;
  1,  9,  42;
  1, 12,  74,  308;
  1, 15, 115,  595,  2310;
  1, 18, 165, 1020,  4746, 17556;
  1, 21, 224, 1610,  8722, 37730,  134596;
  1, 24, 292, 2392, 14778, 73080,  299508, 1038312;
  1, 27, 369, 3393, 23535, 130851, 604707, 2376099, 8046918; ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[2*y/((1-8*x*y) +(2*y-1)*(1-8*x*y)^(3/4)), {x, 0, n}, {y,0,k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2019 *)
  • PARI
    {T(n,k)=if(n==0,1,if(k==0,1,if(k==n, 2^n*(4^n-sum(j=0,n-1, T(n,j)/2^j)), polcoeff((Ser(vector(n,i,T(n-1,i-1)), x) +x*O(x^k))^((n+1)/n),k,x))))}

Formula

G.f.: A(x, y) = 2*y/((1-8*x*y) + (2*y-1)*(1-8*x*y)^(3/4)).
G.f.: A(x, y) = A004982(x*y)/(1 - x*A048779(x*y)).

A097180 Row sums of triangle A097179, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A077860(y)^(n+1), where R_n(1/2) = 4^n for all n>=0.

Original entry on oeis.org

1, 7, 52, 395, 3036, 23506, 182904, 1428387, 11185900, 87789702, 690212744, 5434455182, 42841215704, 338081920260, 2670388231152, 21109070463267, 166980248599884, 1321686452484286, 10467203182893800, 82936871755938970
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2004

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 2/((1-8*x) + (1-8*x)^(3/4)) )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    seq(coeff(series(2/((1-8*x) + (1-8*x)^(3/4)), x, n+1), x, n), n = 0 ..20); # G. C. Greubel, Sep 17 2019
  • Mathematica
    CoefficientList[Series[2/((1-8*x) + (1-8*x)^(3/4)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
  • PARI
    a(n)=polcoeff(2/((1-8*x)+(1-8*x+x*O(x^n))^(3/4)),n,x)
    
  • Sage
    def A097180_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P(2/((1-8*x) + (1-8*x)^(3/4))).list()
    A097180_list(20) # G. C. Greubel, Sep 17 2019

Formula

G.f.: A(x) = 2/((1-8*x) + (1-8*x)^(3/4)).
Conjecture: n*(n-1)*(n+1)*a(n) -12*n*(2*n-1)*(n-1)*a(n-1) +12*(n-1) * (16*n^2-32*n+17)*a(n-2) -16*(4*n-5)*(4*n-7)*(2*n-3)*a(n-3) = 0. - R. J. Mathar, Nov 16 2012
a(n) ~ 2^(3*n+1) / (Gamma(3/4)*n^(1/4)) * (1 - Gamma(3/4) / (n^(1/4) * sqrt(Pi))). - Vaclav Kotesovec, Feb 04 2014

A084099 Expansion of (1+x)^2/(1+x^2).

Original entry on oeis.org

1, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0
Offset: 0

Views

Author

Paul Barry, May 15 2003

Keywords

Comments

Inverse binomial transform of A077860. Partial sums of A084100.
Transform of sqrt(1+2x)/sqrt(1-2x) (A063886) under the Chebyshev transformation A(x)->((1-x^2)/(1+x^2))*A(x/(1+x^2)). - Paul Barry, Oct 12 2004
Euler transform of length 4 sequence [2, -3, 0, 1]. - Michael Somos, Aug 04 2009

Examples

			G.f. = 1 + 2*x - 2*x^3 + 2*x^5 - 2*x^7 + 2*x^9 - 2*x^11 + 2*x^13 - 2*x^15 + ...
		

Crossrefs

Programs

  • Magma
    [1] cat [Integers()!((1-(-1)^n)*(-1)^(n*(n-1)/2)): n in [1..100]]; // Wesley Ivan Hurt, Oct 27 2015
    
  • Maple
    A084099:=n->(1-(-1)^n)*(-1)^((2*n-1+(-1)^n)/4): 1,seq(A084099(n), n=1..100); # Wesley Ivan Hurt, Oct 27 2015
  • Mathematica
    CoefficientList[Series[(1+x)^2/(1+x^2),{x,0,110}],x] (* or *) Join[ {1}, PadRight[{},120,{2,0,-2,0}]] (* Harvey P. Dale, Nov 23 2011 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * if( n%2, (-1)^(n\2)) )}; /* Michael Somos, Aug 04 2009 */
    
  • PARI
    a(n) = if(n==0, 1, I*((-I)^n-I^n)) \\ Colin Barker, Oct 27 2015
    
  • PARI
    Vec((1+x)^2/(1+x^2) + O(x^100)) \\ Colin Barker, Oct 27 2015

Formula

G.f.: (1+x)^2/(1+x^2).
a(n) = 2 * A101455(n) for n>0. - N. J. A. Sloane, Jun 01 2010
a(n+2) = (-1)^A180969(1,n)*((-1)^n - 1). - Adriano Caroli, Nov 18 2010
G.f.: 4*x + 2/(1+x)/G(0), where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 19 2013
From Wesley Ivan Hurt, Oct 27 2015: (Start)
a(n) = (1-sign(n)*(-1)^n)*(-1)^floor(n/2).
a(n) = 2*(n mod 2)*(-1)^floor(n/2) for n>0, a(0)=1.
a(n) = (1-(-1)^n)*(-1)^(n*(n-1)/2) for n>0, a(0)=1. (End)
From Colin Barker, Oct 27 2015: (Start)
a(n) = -a(n-2).
a(n) = i*((-i)^n-i^n) for n>0, where i = sqrt(-1).
(End)

A279230 Expansion of 1/((1-x)^2*(1-2*x+2*x^2)).

Original entry on oeis.org

1, 4, 9, 14, 15, 8, -7, -22, -21, 12, 77, 142, 143, 16, -239, -494, -493, 20, 1045, 2070, 2071, 24, -4071, -8166, -8165, 28, 16413, 32798, 32799, 32, -65503, -131038, -131037, 36, 262181, 524326, 524327, 40, -1048535, -2097110, -2097109, 44, 4194349, 8388654, 8388655
Offset: 0

Views

Author

Philippe Deléham, Dec 08 2016

Keywords

Comments

Partial sums of A077860.

Crossrefs

Programs

  • PARI
    Vec(1 / ((1 - x)^2*(1 - 2*x + 2*x^2)) + O(x^50)) \\ Colin Barker, Aug 04 2017
    
  • PARI
    {a(n) = sum(k=0, n\2, (-1)^k*binomial(n+3, 2*k+3))} \\ Seiichi Manyama, Apr 07 2019

Formula

a(n) = 4*a(n-1) - 7*a(n-2) + 6*a(n-3) - 2*a(n-4) for n>3.
a(n) = 2*a(n-1) - 2*a(n-2) + n + 1, with a(-1) = a(-2) = 0.
a(n) = (3 - (1-i)^(1+n) - (1+i)^(1+n) + n) where i=sqrt(-1). - Colin Barker, Aug 04 2017
From Seiichi Manyama, Apr 07 2019: (Start)
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n+3,2*k+3).
a(n) = Sum_{i=0..n} Sum_{j=0..n-i} (-1)^j * binomial(i+1,j+1) * binomial(n-i+1,j+1). (End)
Showing 1-4 of 4 results.