cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A382436 Triangle read by rows, defined by the two-variable g.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 9, 17, 9, 1, 1, 12, 36, 36, 12, 1, 1, 15, 64, 101, 64, 15, 1, 1, 18, 101, 227, 227, 101, 18, 1, 1, 21, 147, 440, 627, 440, 147, 21, 1, 1, 24, 202, 767, 1459, 1459, 767, 202, 24, 1, 1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1
Offset: 0

Views

Author

F. Chapoton, Mar 25 2025

Keywords

Comments

The original definition was "Decomposition of A077938".
Every row is symmetric.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,   1;
  1,  6,   6,    1;
  1,  9,  17,    9,    1;
  1, 12,  36,   36,   12,    1;
  1, 15,  64,  101,   64,   15,    1;
  1, 18, 101,  227,  227,  101,   18,    1;
  1, 21, 147,  440,  627,  440,  147,   21,   1;
  1, 24, 202,  767, 1459, 1459,  767,  202,  24,  1;
  1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1;
  ...
		

Crossrefs

Similar to A008288, A103450, and A382444.
Row sums are A077938.
T(2n, n) gives A339565.
Cf. A056594.

Programs

  • Sage
    y = polygen(QQ, 'y')
    x = y.parent()[['x']].gen()
    inverse = 1 + (-y - 1)*x - y*x^2 + (-y^2 - y)*x^3
    gf = 1 / inverse
    [list(u) for u in list(gf.O(11))]

Formula

G.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3).
Sum_{k=0..n} (-1)^k * T(n,k) = A056594(n). - Alois P. Heinz, Mar 25 2025

A077987 Expansion of 1/(1+2*x-x^2+2*x^3).

Original entry on oeis.org

1, -2, 5, -14, 37, -98, 261, -694, 1845, -4906, 13045, -34686, 92229, -245234, 652069, -1733830, 4610197, -12258362, 32594581, -86667918, 230447141, -612751362, 1629285701, -4332217046, 11519222517, -30629233482, 81442123573, -216551925662, 575804441861, -1531045056530
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Cf. A077938.

Programs

  • GAP
    a:=[1,-2,5];; for n in [4..40] do a[n]:=-2*a[n-1]+a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1+2*x-x^2+2*x^3) )); // G. C. Greubel, Jun 25 2019
    
  • Mathematica
    CoefficientList[Series[1/(1+2x-x^2+2x^3),{x,0,40}],x] (* or *) LinearRecurrence[{-2,1,-2},{1,-2,5},40] (* Harvey P. Dale, Dec 27 2013 *)
  • PARI
    Vec(1/(1+2*x-x^2+2*x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • Sage
    (1/(1+2*x-x^2+2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019
    

Formula

a(n) = -2*a(n-1)+a(n-2)-2*a(n-3) with a(0)=1, a(1)=-2, a(2)=5. - Harvey P. Dale, Dec 27 2013
a(n) = (-1)^n * A077938(n). - G. C. Greubel, Jun 25 2019

A102035 Carrie's triangle, read by rows, where the terms are generated by the rule: T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + T(n-3,k-1) + T(n-3,k), with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 2, 6, 5, 1, 3, 11, 15, 7, 1, 4, 20, 36, 28, 9, 1, 6, 35, 78, 85, 45, 11, 1, 9, 59, 159, 221, 166, 66, 13, 1, 13, 98, 309, 522, 509, 287, 91, 15, 1, 19, 161, 579, 1153, 1382, 1018, 456, 120, 17, 1, 28, 261, 1056, 2421, 3444, 3141, 1840, 681, 153, 19, 1, 41, 419
Offset: 0

Views

Author

Paul D. Hanna, Dec 24 2004

Keywords

Comments

Column 0 forms A000930. Row sums form A077938. This table was created by Carrie Hanna.

Examples

			Generated by adding preceding terms in the triangle
at positions that form the letter 'C': T(n,k) =
T(n-3,k-1) + T(n-3,k) +
T(n-2,k-1) +
T(n-1,k-1) + T(n-1,k).
Rows begin:
[1],
[1,1],
[1,3,1],
[2,6,5,1],
[3,11,15,7,1],
[4,20,36,28,9,1],
[6,35,78,85,45,11,1],
[9,59,159,221,166,66,13,1],
[13,98,309,522,509,287,91,15,1],
[19,161,579,1153,1382,1018,456,120,17,1],...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=if(n
    				

Formula

G.f.: A(x, y) = 1/(1-(1+y)*x-y*x^2-(1+y)*x^3).
Showing 1-3 of 3 results.