A078057 Expansion of (1+x)/(1-2*x-x^2).
1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243, 275807, 665857, 1607521, 3880899, 9369319, 22619537, 54608393, 131836323, 318281039, 768398401, 1855077841, 4478554083, 10812186007, 26102926097, 63018038201, 152139002499, 367296043199, 886731088897
Offset: 0
Examples
G.f. = 1 + 3*x + 7*x^2 + 17*x^3 + 41*x^4 + 99*x^5 + 239*x^6 + 577*x^7 + ... - _Michael Somos_, Jul 28 2018
References
- A. Froehlich and M. J. Taylor, Algebraic Number Theory, Cambridge, 1991 (see p. 3).
- Thomas Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril and Nathanaël Hassler, Intervals in a family of Fibonacci lattices, Univ. de Bourgogne (France, 2024). See p. 7.
- César Bautista-Ramos and Carlos Guillén-Galván, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8
- Tanya Khovanova, Recursive Sequences
- Constantinos Kourouzides, Study of an elementary trace monoid with two commuting generators, GitHub repository.
- Stephan Mertens, Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph, arXiv:2408.08053 [math.CO], 2024. See p. 5.
- Emanuele Munarini, Combinatorial properties of the antichains of a garland, Integers, 9 (2009), 353-374.
- Shiva Samieinia, Digital straight line segments and curves, Licentiate Thesis, Stockholm University, Department of Mathematics, Report 2007:6.
- Shiva Samieinia, The number of continuous curves in digital geometry, Port. Math. 67 (1) (2010) 75-89
- Gyula Tasi and Fujio Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 63).
- Index entries for linear recurrences with constant coefficients, signature (2,1).
Crossrefs
Programs
-
Haskell
a078057 = sum . a035607_row -- Reinhard Zumkeller, Jul 20 2013
-
Mathematica
Expand[Table[((1 + Sqrt[2])^n + (1 - Sqrt[2])^n)/2, {n, 1, 30}]] (* Artur Jasinski, Dec 10 2006 *) CoefficientList[Series[(1 + x)/(1 - 2 x - x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2014 *) a[ n_] := ChebyshevT[n+1, I] / I^(n+1); (* Michael Somos, Jul 28 2018 *)
-
PARI
{a(n) = polchebyshev(n+1, 1, I) / I^(n+1)}; /* Michael Somos, Jul 28 2018 */
Formula
a(n) = 2*a(n-1) + a(n-2); a(0)=1; a(1)=3. - Wayne VanWeerthuizen, May 02 2004
a(n) = 2*a(n-1) + a(n-2); lim_{n->oo} a(n+1)/a(n) = 1 + sqrt(2) (i.e., the silver ratio). - Shiva Samieinia (shiva(AT)math.su.se), Oct 08 2007
a(n) = Sum_{k=0..n} A147720(n,k)*3^k*(-1/3)^(n-k). - Philippe Deléham, Nov 15 2008
a(n) = Pell(n) + Pell(n+1) with Pell(n) = A000129(n). - Johannes W. Meijer, Aug 15 2010
G.f.: G(0)/(2*x) -1/x, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
a(n) = T(n+1, i) / i^(n+1), where T(n, x) denotes the Chebyshev polynomial of the first kind. - Michael Somos, Jul 28 2018
E.g.f.: exp(x)*(cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, Jan 31 2023
Comments