cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A198094 3rd term of continued fraction for sqrt(2)^sqrt(2)^...^sqrt(2) with n sqrt(2)'s.

Original entry on oeis.org

2, 1, 3, 5, 8, 12, 19, 28, 41, 60, 87, 127, 183, 266, 384, 555, 802, 1158, 1671, 2412, 3480, 5022, 7246, 10455, 15084, 21763, 31398, 45298, 65353, 94285, 136025, 196244, 283121, 408458, 589281, 850154, 1226514, 1769486, 2552829, 3682955, 5313382
Offset: 1

Views

Author

Vladimir Reshetnikov, Oct 30 2011

Keywords

Comments

1st terms are 1,1,1,1,1,... and 2nd terms are 2,1,1,1,1,...

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[#, 3][[3]] & /@ NestList[Sqrt[2]^# &, Sqrt[2], 40]
  • PARI
    a(n) = {my(c = sqrt(2)); for (k=1, n-1, c = sqrt(2)^c); contfrac(c)[3];} \\ Michel Marcus, Oct 19 2016

Formula

a(n) ~ c / log(2)^n, where c = 1/A277435 = 1.582031511247872306827383... - Vladimir Reshetnikov, Oct 18 2016

A109259 a(n) = floor(n*sqrt(2)^sqrt(2)).

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 34, 35, 37, 39, 40, 42, 44, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 62, 63, 65, 66, 68, 70, 71, 73, 75, 76, 78, 79, 81, 83, 84, 86, 88, 89, 91, 93, 94, 96, 97, 99, 101, 102, 104
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2005

Keywords

Comments

Beatty sequence for sqrt(2)^sqrt(2) = 1.63252...; complement of A109260.

Crossrefs

Programs

  • Magma
    [Floor(n*Sqrt(2)^Sqrt(2)): n in [1..100]]; // G. C. Greubel, Mar 27 2018
  • Mathematica
    With[{c=(Sqrt[2])^Sqrt[2]},Floor[c*Range[100]]] (* Harvey P. Dale, Mar 19 2018 *)
  • PARI
    for(n=1,100, print1(floor(n*sqrt(2)^sqrt(2)), ", ")) \\ G. C. Greubel, Mar 27 2018
    

A185094 Decimal expansion of sqrt(3)^sqrt(3).

Original entry on oeis.org

2, 5, 8, 9, 3, 9, 9, 9, 0, 2, 2, 6, 0, 3, 4, 4, 0, 6, 2, 2, 7, 0, 6, 7, 1, 8, 6, 8, 8, 9, 6, 0, 7, 7, 0, 4, 2, 6, 7, 6, 7, 2, 0, 4, 5, 6, 2, 7, 1, 4, 8, 7, 7, 5, 2, 5, 8, 5, 6, 5, 9, 9, 9, 2, 7, 6, 5, 1, 4, 6, 6, 7, 7, 0, 5, 5, 7, 2, 0, 4, 5, 0, 7, 1, 4, 9
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A194348 Decimal expansion of sqrt(2)^sqrt(2)^sqrt(2).

Original entry on oeis.org

1, 7, 6, 0, 8, 3, 9, 5, 5, 5, 8, 8, 0, 0, 2, 8, 0, 9, 0, 7, 5, 6, 6, 4, 9, 8, 9, 5, 6, 3, 8, 3, 7, 2, 7, 4, 8, 0, 7, 9, 8, 0, 4, 0, 9, 4, 3, 1, 8, 5, 0, 9, 9, 0, 4, 6, 4, 6, 3, 8, 8, 2, 2, 5, 0, 5, 3, 4, 2, 8, 4, 1, 6, 8, 7, 5, 4, 5, 4, 6, 5, 8, 1, 1, 9, 0, 4, 6, 3, 5, 1, 1, 5, 2, 6, 3, 0, 5, 9, 8, 4
Offset: 1

Views

Author

Jonathan Sondow, Aug 28 2011

Keywords

Comments

If Schanuel's Conjecture is true, then sqrt(2)^sqrt(2)^sqrt(2) is transcendental (see Marques and Sondow 2010, p. 79).

Examples

			1.76083955588002809075664989563837274807980409431850990464638822505342...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A078333 (decimal expansion of sqrt(2)^sqrt(2)), A194555 (the decimal expansion of the real part of I^e^Pi).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(2)^Sqrt(2)^Sqrt(2); // G. C. Greubel, Aug 19 2018
  • Mathematica
    RealDigits[ Sqrt[2]^Sqrt[2]^Sqrt[2], 10, 100] // First
  • PARI
    sqrt(2)^sqrt(2)^sqrt(2) \\ Charles R Greathouse IV, May 14 2014
    
  • PARI
    (x->x^x^x)(sqrt(2)) \\ Charles R Greathouse IV, May 14 2014
    

A109261 Self-inverse integer permutation induced by Beatty sequences for sqrt(2)^sqrt(2) and sqrt(2)^sqrt(2)/(sqrt(2)^sqrt(2)-1).

Original entry on oeis.org

2, 1, 5, 7, 3, 10, 4, 12, 15, 6, 18, 8, 20, 23, 9, 25, 28, 11, 30, 13, 33, 36, 14, 38, 16, 41, 43, 17, 46, 19, 49, 51, 21, 54, 56, 22, 59, 24, 61, 64, 26, 67, 27, 69, 72, 29, 74, 77, 31, 80, 32, 82, 85, 34, 87, 35, 90, 92, 37, 95, 39, 98, 100, 40, 103
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2005

Keywords

Crossrefs

Cf. A078333 (sqrt(2)^sqrt(2)).

Formula

a(A109259(n))=A109260(n) and a(A109260(n))=A109259(n).

A185110 Decimal expansion of sqrt(3)^sqrt(2).

Original entry on oeis.org

2, 1, 7, 4, 5, 8, 1, 4, 2, 8, 1, 9, 1, 9, 6, 7, 0, 0, 4, 1, 1, 1, 0, 6, 2, 4, 2, 7, 8, 1, 4, 6, 4, 3, 4, 8, 7, 2, 8, 4, 0, 9, 5, 1, 1, 7, 8, 7, 1, 7, 3, 1, 7, 3, 4, 5, 2, 5, 0, 9, 1, 5, 9, 6, 9, 2, 1, 1, 2, 1, 8, 4, 1, 0, 7, 9, 9, 7, 8, 8, 7, 3, 5, 2, 0, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A185111 Decimal expansion of sqrt(2)^sqrt(3).

Original entry on oeis.org

1, 8, 2, 2, 6, 3, 4, 6, 5, 4, 9, 6, 6, 2, 4, 2, 2, 1, 4, 3, 9, 3, 7, 6, 8, 2, 1, 5, 5, 9, 4, 1, 4, 2, 3, 7, 8, 8, 2, 8, 8, 8, 4, 2, 0, 4, 7, 0, 2, 5, 9, 7, 6, 6, 4, 4, 9, 6, 0, 1, 6, 3, 4, 3, 9, 3, 4, 9, 4, 3, 6, 5, 1, 0, 1, 8, 6, 3, 1, 7, 7, 8, 3, 6, 5, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Showing 1-7 of 7 results.