cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078430 Sum of gcd(k^2,n) for 1 <= k <= n.

Original entry on oeis.org

1, 3, 5, 10, 9, 15, 13, 28, 33, 27, 21, 50, 25, 39, 45, 88, 33, 99, 37, 90, 65, 63, 45, 140, 145, 75, 153, 130, 57, 135, 61, 240, 105, 99, 117, 330, 73, 111, 125, 252, 81, 195, 85, 210, 297, 135, 93, 440, 385, 435, 165, 250, 105, 459, 189, 364, 185, 171, 117, 450, 121
Offset: 1

Views

Author

Vladeta Jovovic, Dec 30 2002

Keywords

Comments

a(n) is the number of non-congruent solutions to x^2*y = 0 mod n. - Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 17 2003
Row sums of triangle A245717. - Reinhard Zumkeller, Jul 30 2014

Crossrefs

Programs

  • Haskell
    a078430 = sum . a245717_row  -- Reinhard Zumkeller, Jul 30 2014
    
  • Mathematica
    Table[Sum[GCD[k^2,n],{k,n}],{n,70}] (* Harvey P. Dale, Sep 29 2014 *)
    f[p_, e_] := If[EvenQ[e], p^(3*e/2) + p^(3*e/2 - 1), 2*p^((3*e - 1)/2)] - p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n) = sum(k=1,n, gcd(k^2, n)); \\ Michel Marcus, Aug 03 2016

Formula

a(n) is multiplicative. G.f. for a(p^n), p a prime, is given by (1+(p-1)*x-p^2*x^2)/(1-p*x)/(1-p^3*x^2).
a(n) = n*Sum_{d|n} phi(d)*N(d)/d, where phi is Euler's totient function A000010 and N(n) is sequence A000188. - Laszlo Toth, Apr 15 2012
Multiplicative with a(p^e) = p^(3*e/2) + p^(3*e/2-1) - p^(e-1) if e is even, and 2*p^((3*e-1)/2) - p^(e-1) if e is odd. - Amiram Eldar, Apr 28 2023