cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078482 Expansion of g.f. (1 - 3*x + x^2 - sqrt(1 - 6*x + 7*x^2 - 2*x^3 + x^4))/(2*x).

Original entry on oeis.org

0, 1, 2, 6, 20, 70, 254, 948, 3618, 14058, 55432, 221262, 892346, 3630680, 14885042, 61432382, 255025212, 1064190214, 4461325382, 18780710508, 79357572866, 336466650450, 1431007889744, 6103431668830, 26099839562738, 111877997049648, 480635694869218
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2003

Keywords

Comments

Number of data structures of a certain wreath product type.
a(n) is also the number of (2-14-3, 3-41-2, 2-4-1-3, 3-1-4-2)-avoiding permutations. - Mireille Bousquet-Mélou, Jul 13 2012
Number of permutations that are separable by a point. And also the number of rectangulations that are guillotine and one-sided. - Manfred Scheucher, May 24 2023

Examples

			G.f.: A(x) = x + 2*x^2 + 6*x^3 + 20*x^4 + 70*x^5 + 254*x^6 + 948*x^7 + ...
From _Paul D. Hanna_, Sep 12 2012: (Start)
The logarithm of the g.f. begins
log(A(x)/x) = (1 + 1/(1-x))*x + (1 + 2^2/(1-x) + 1/(1-x)^2)*x^2/2 +
(1 + 3^2/(1-x) + 3^2/(1-x)^2 + 1/(1-x)^3)*x^3/3 +
(1 + 4^2/(1-x) + 6^2/(1-x)^2 + 4^2/(1-x)^3 + 1/(1-x)^4)*x^4/4 +
(1 + 5^2/(1-x) + 10^2/(1-x)^2 + 10^2/(1-x)^3 + 5^2/(1-x)^4 + 1/(1-x)^5)*x^5/5 + ...
(End)
a(5) = 70 = (1, 1, 2, 6, 20) dot product (1, 1, 3, 9, 29) = (29 + 9 + 6 + 6 + 20). - _Gary W. Adamson_, May 20 2013
		

Crossrefs

Cf. A006318 (separable permutations), A078483.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 3 x + x^2 - Sqrt[1 - 6 x + 7 x^2 - 2 x^3 + x^4]) / (2 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 28 2016 *)
  • Maxima
    a(n):=if n=0 then 0 else sum((binomial(m,n-m+1)* (sum(binomial(m,i)* binomial(2*m-i-2,m-1),i,0,m-1)) *(-1)^(n-m+1))/m,m,1,n+1); /* Vladimir Kruchinin, May 21 2011 */
    
  • PARI
    {a(n)=local(A=x);for(i=1,n,A=x*(1+A)*(1+A/(1-x +x*O(x^n))));polcoeff(A,n)} \\ Paul D. Hanna, Sep 12 2012
    
  • PARI
    {a(n)=polcoeff(x*exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2/(1-x +x*O(x^n))^k))),n)} \\ Paul D. Hanna, Sep 12 2012

Formula

a(n) = Sum_{m=1..n+1} C(m,n-m+1)*(Sum_{i=0..m-1} C(m,i)*C(2*m-i-2,m-1))*(-1)^(n-m+1)/m, n>0, a(0)=0. - Vladimir Kruchinin, May 21 2011
n*(n+1)*a(n) - 3*n*(2n-1)*a(n-1) + 7*n*(n-2)*a(n-2) - n*(2n-7)*a(n-3) + n*(n-5)*a(n-4) = 0. - R. J. Mathar, Jul 08 2012
G.f. satisfies: A(x) = x*(1 + A(x)) * (1 + A(x)/(1-x)). G.f.: x*exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 / (1-x)^k ). - Paul D. Hanna, Sep 12 2012
a(n) ~ sqrt(11*sqrt(2) - 16 + sqrt(16*sqrt(2) - 22)) * 2^(n - 1/2) / (sqrt(Pi) * n^(3/2) * (1 - sqrt(8*sqrt(2) - 11))^(n+1)). - Vaclav Kotesovec, May 17 2024

Extensions

Replaced definition with g.f. given by Atkinson and Still (2002). - N. J. A. Sloane, May 24 2016