Original entry on oeis.org
0, 3, 10, 36, 134, 510, 1976, 7770, 30934, 124456, 505254, 2067250, 8516028, 35292978, 147045490, 615572172, 2587970166, 10922249958, 46257477232, 196532215226, 837432161710, 3577882539792, 15323984114822, 65781749593002, 282979540332660
Offset: 0
Original entry on oeis.org
1, 1, 4, 14, 50, 184, 694, 2670, 10440, 41374, 165830, 671084, 2738334, 11254362, 46547340, 193592830, 809165002, 3397135168, 14319385126, 60576862358, 257109077584, 1094541239294, 4672423779086, 19996407893908, 85778157486910, 368757697819570, 1588465839532628, 6855304750273902
Offset: 0
-
Differences[CoefficientList[Series[(1-3 x+x^2-Sqrt[1-6 x+7 x^2-2 x^3+x^4])/(2 x),{x,0,40}],x]] (* Harvey P. Dale, Jun 08 2024 *)
A384685
Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, all internal nodes have weight 1, and leaf nodes have weights in {1,...,k}.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 5, 8, 9, 0, 14, 25, 28, 29, 0, 42, 83, 95, 98, 99, 0, 132, 289, 337, 349, 352, 353, 0, 429, 1041, 1236, 1285, 1297, 1300, 1301, 0, 1430, 3847, 4652, 4854, 4903, 4915, 4918, 4919, 0, 4862, 14504, 17865, 18709, 18912, 18961, 18973, 18976, 18977
Offset: 0
Triangle begins:
k=0 1 2 3 4 5 6 7 8
n=0 [1]
n=1 [0, 1]
n=2 [0, 2, 3]
n=3 [0, 5, 8, 9]
n=4 [0, 14, 25, 28, 29]
n=5 [0, 42, 83, 95, 98, 99]
n=6 [0, 132, 289, 337, 349, 352, 353]
n=7 [0, 429, 1041, 1236, 1285, 1297, 1300, 1301]
n=8 [0, 1430, 3847, 4652, 4854, 4903, 4915, 4918, 4919]
...
T(2,2) = 3 counts:
o o o
| | / \
(2) (1) (1) (1)
|
(1)
-
b(k) = {(x^2-x^(k+1))/(1-x)}
P(N,k) = {my(x='x+O('x^N)); Vec((1-b(k)-sqrt((b(k)-1)^2-4*x))/(2*x))}
T(max_row) = { my( N = max_row+1, v = vector(N, i, if(i==1,1,0))~); for(k=1,N, v=matconcat([v,P(N+1,k)~])); vector(N,n, vector(n,k,v[n,k]))}
A363809
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, and 2-1-3-5-4.
Original entry on oeis.org
1, 1, 2, 6, 22, 89, 378, 1647, 7286, 32574, 146866, 667088, 3050619, 14039075, 64992280, 302546718, 1415691181, 6656285609, 31436228056, 149079962872, 709680131574, 3390269807364, 16248661836019, 78109838535141, 376531187219762, 1819760165454501
Offset: 0
- Andrei Asinowski and Cyril Banderier. Geometry meets generating functions: Rectangulations and permutations (2023).
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A078482,
A033321,
A363810,
A363811,
A363812,
A363813,
A006012.
A363810
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-14-3, and 4-5-3-1-2.
Original entry on oeis.org
1, 1, 2, 6, 21, 79, 306, 1196, 4681, 18308, 71564, 279820, 1095533, 4298463, 16913428, 66769536, 264526329, 1051845461, 4197832133, 16813161765, 67571221016, 272448598737, 1101876945673, 4469106749281, 18174503562880, 74093063050412, 302753929958872
Offset: 0
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363811,
A363812,
A363813,
A006012.
-
with(gfun): seq(coeff(algeqtoseries(x^8*(-2+x)^2*F^4 - x^3*(x-1)*(-2+x)*(x^5-7*x^4+4*x^3-6*x^2+5*x-1)*F^3 - x*(x-1)*(4*x^7-22*x^6+37*x^5-42*x^4+53*x^3-35*x^2+10*x-1)*F^2 - (5*x^6-16*x^5+15*x^4-28*x^3+23*x^2-8*x+1)*(x-1)^2*F - (2*x^5-5*x^4+4*x^3-10*x^2+6*x-1)*(x-1)^2, x, F, 32, true)[1], x, n+1), n = 0..30); # Vaclav Kotesovec, Jun 24 2023
A363811
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-3-5-4, and 4-5-3-1-2.
Original entry on oeis.org
1, 1, 2, 6, 22, 88, 362, 1488, 6034, 24024, 93830, 359824, 1357088, 5043260, 18501562, 67120024, 241169322, 859450004, 3041415520, 10699090888, 37448249502, 130518538696, 453276141238, 1569476495000, 5420784841936, 18683861676756, 64286814548706
Offset: 0
- Andrei Asinowski and Cyril Banderier, From geometry to generating functions: rectangulations and permutations, arXiv:2401.05558 [cs.DM], 2024. See page 2.
- Arturo Merino and Torsten Mütze. Combinatorial generation via permutation languages. III. Rectangulations. Discrete & Computational Geometry, 70 (2023), 51-122. Preprint: arXiv:2103.09333 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (18,-141,630,-1767,3224,-3834,2896,-1312,320,-32).
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363810,
A363812,
A363813,
A006012.
-
CoefficientList[Series[(1 - x)*(1 - 16*x + 109*x^2 - 410*x^3 + 923*x^4 - 1256*x^5 + 988*x^6 - 400*x^7 + 66*x^8 - 2*x^9)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2*(1 - 2*x)^4),{x,0,26}],x] (* Stefano Spezia, Jun 24 2023 *)
A363812
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-4-3, and 3-41-2.
Original entry on oeis.org
1, 1, 2, 6, 20, 69, 243, 870, 3159, 11611, 43130, 161691, 611065, 2325739, 8907360, 34304298, 132770564, 516164832, 2014739748, 7892775473, 31022627947, 122304167437, 483513636064, 1916394053725, 7613498804405, 30313164090695
Offset: 0
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363810,
A363811,
A363813,
A006012.
-
CoefficientList[Series[(1 - 3*x + 3*x^2 - Sqrt[1 - 6*x + 7*x^2 + 2*x^3 + x^4])/(2*x^2*(2 - x)),{x,0,25}],x] (* Stefano Spezia, Jun 24 2023 *)
A363813
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-4-3, and 4-5-3-1-2.
Original entry on oeis.org
1, 1, 2, 6, 21, 78, 295, 1114, 4166, 15390, 56167, 202738, 724813, 2570276, 9052494, 31702340, 110503497, 383691578, 1328039043, 4584708230, 15793983638, 54315199642, 186526735307, 639831906594, 2192754259993, 7509139583560, 25699765092254, 87913948206096
Offset: 0
- Andrei Asinowski and Cyril Banderier, From geometry to generating functions: rectangulations and permutations, arXiv:2401.05558 [cs.DM], 2024. See page 2.
- Arturo Merino and Torsten Mütze. Combinatorial generation via permutation languages. III. Rectangulations. Discrete & Computational Geometry, 70 (2023), 51-122. Preprint: arXiv:2103.09333 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (10,-37,62,-47,16,-2).
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363810,
A363811,
A363812,
A006012.
-
CoefficientList[Series[(1 - 9*x + 29*x^2 - 39*x^3 + 20*x^4 - 3*x^5)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2),{x,0,27}],x] (* Stefano Spezia, Jun 24 2023 *)
A078483
G.f.: -2*x/(1 - 5*x - sqrt(1-4*x) + x*sqrt(1-4*x) + 2*x^2).
Original entry on oeis.org
1, 1, 2, 6, 20, 69, 243, 869, 3145, 11491, 42312, 156807, 584288, 2187298, 8221257, 31009841, 117331070, 445174418, 1693270531, 6454992143, 24657428519, 94363587324, 361741068087, 1388892123038, 5340282880156, 20560742443041, 79259430563491, 305889059254747
Offset: 0
-
catGF = (1 - Sqrt[1 - 4 x])/(2 x); CoefficientList[Normal[Series[1/(1 - (x + x^2 catGF^3)), {x, 0, 20}]], x] (* David Callan, Feb 06 2016 *)
CoefficientList[Series[-2 x / (1 - 5 x - Sqrt[1 - 4 x] + x Sqrt[1 - 4 x] + 2 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, May 28 2016 *)
-
a(n):=sum(m*sum(((sum(binomial(j,-2*m-k+2*j)*binomial(m+k,j),j,0,m+k))*binomial(n-m-1,k-1))/(m+k),k,1,n-m),m,1,n)+1; /* Vladimir Kruchinin, Oct 11 2011 */
Replaced definition with g.f. given by Atkinson and Still (2002). -
N. J. A. Sloane, May 24 2016
A348351
Number of permutations of [n] avoiding the patterns 2-41-3, 3-14-2, 2-14-3, and 3-41-2.
Original entry on oeis.org
1, 1, 2, 6, 20, 72, 274, 1088, 4470, 18884, 81652, 360054, 1614618, 7346688, 33856008, 157777908, 742637416
Offset: 0
- L. J. Leifheit, Combinatorial Properties of Rectangulations, Master's thesis, Technische Universität Berlin, 2021.
- A. Asinowski, G. Barequet, M. Bousquet-Mélou, T. Mansour, and R. Y. Pinter, Orders induced by segments in floorplan partitions and (2-14-3,3-41-2)-avoiding permutations, Electronic Journal of Combinatorics 20(2), 2013.
- Andrei Asinowski, Jean Cardinal, Stefan Felsner, and Éric Fusy, Combinatorics of rectangulations: Old and new bijections, arXiv:2402.01483 [math.CO], 2023. See p. 30.
- D. Eppstein, E. Mumford, B. Speckmann, and K. Verbeek, Area-Universal Rectangular Layouts, arXiv:0901.3924 [cs.CG], 2009.
- A. Merino and T. Mütze, Combinatorial generation via permutation languages. III. Rectangulations, arXiv:2103.09333 [math.CO], 2021.
- Manfred Scheucher, L.J. Leifheit's python program for enumeration.
- The Combinatorial Object Server, Rectangulation Generator.
Showing 1-10 of 12 results.
Comments