cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A272686 Second differences of A078482.

Original entry on oeis.org

0, 3, 10, 36, 134, 510, 1976, 7770, 30934, 124456, 505254, 2067250, 8516028, 35292978, 147045490, 615572172, 2587970166, 10922249958, 46257477232, 196532215226, 837432161710, 3577882539792, 15323984114822, 65781749593002, 282979540332660
Offset: 0

Views

Author

N. J. A. Sloane, May 24 2016

Keywords

Crossrefs

A272687 First differences of A078482.

Original entry on oeis.org

1, 1, 4, 14, 50, 184, 694, 2670, 10440, 41374, 165830, 671084, 2738334, 11254362, 46547340, 193592830, 809165002, 3397135168, 14319385126, 60576862358, 257109077584, 1094541239294, 4672423779086, 19996407893908, 85778157486910, 368757697819570, 1588465839532628, 6855304750273902
Offset: 0

Views

Author

N. J. A. Sloane, May 24 2016

Keywords

Crossrefs

Cf. A078482, A272686 (second differences).

Programs

  • Mathematica
    Differences[CoefficientList[Series[(1-3 x+x^2-Sqrt[1-6 x+7 x^2-2 x^3+x^4])/(2 x),{x,0,40}],x]] (* Harvey P. Dale, Jun 08 2024 *)

A384685 Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, all internal nodes have weight 1, and leaf nodes have weights in {1,...,k}.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 5, 8, 9, 0, 14, 25, 28, 29, 0, 42, 83, 95, 98, 99, 0, 132, 289, 337, 349, 352, 353, 0, 429, 1041, 1236, 1285, 1297, 1300, 1301, 0, 1430, 3847, 4652, 4854, 4903, 4915, 4918, 4919, 0, 4862, 14504, 17865, 18709, 18912, 18961, 18973, 18976, 18977
Offset: 0

Views

Author

John Tyler Rascoe, Jun 06 2025

Keywords

Examples

			Triangle begins:
    k=0     1     2     3     4     5     6     7      8
 n=0 [1]
 n=1 [0,    1]
 n=2 [0,    2,    3]
 n=3 [0,    5,    8,    9]
 n=4 [0,   14,   25,   28,   29]
 n=5 [0,   42,   83,   95,   98,   99]
 n=6 [0,  132,  289,  337,  349,  352,  353]
 n=7 [0,  429, 1041, 1236, 1285, 1297, 1300, 1301]
 n=8 [0, 1430, 3847, 4652, 4854, 4903, 4915, 4918, 4919]
...
T(2,2) = 3 counts:
  o    o      o
  |    |     / \
 (2)  (1)  (1) (1)
       |
      (1)
		

Crossrefs

Cf. (column k=1) A000108, A078481, A078482, A088218, (column k=2) A143330, A380761, A384613.

Programs

  • PARI
    b(k) = {(x^2-x^(k+1))/(1-x)}
    P(N,k) = {my(x='x+O('x^N)); Vec((1-b(k)-sqrt((b(k)-1)^2-4*x))/(2*x))}
    T(max_row) = { my( N = max_row+1, v = vector(N, i, if(i==1,1,0))~); for(k=1,N, v=matconcat([v,P(N+1,k)~])); vector(N,n, vector(n,k,v[n,k]))}

Formula

G.f. of column k is (1 - b(k,x) - sqrt((b(k,x) - 1)^2 - 4*x))/(2*x) where b(k,x) = (x^2 - x^(k + 1))/(1 - x).
T(n,k) = T(n,n) for k > n.

A363809 Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, and 2-1-3-5-4.

Original entry on oeis.org

1, 1, 2, 6, 22, 89, 378, 1647, 7286, 32574, 146866, 667088, 3050619, 14039075, 64992280, 302546718, 1415691181, 6656285609, 31436228056, 149079962872, 709680131574, 3390269807364, 16248661836019, 78109838535141, 376531187219762, 1819760165454501
Offset: 0

Views

Author

Andrei Asinowski, Jun 23 2023

Keywords

Comments

Equivalently, for n>0, the number of separable permutations of [n] that avoid 2-1-3-5-4.
The number of guillotine rectangulations (with respect to the weak equivalence) that avoid the geometric pattern "7". See the Merino and Mütze reference, Table 3, entry "12347".

References

  • Andrei Asinowski and Cyril Banderier. Geometry meets generating functions: Rectangulations and permutations (2023).

Crossrefs

Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference: A006318, A106228, A078482, A033321, A363810, A363811, A363812, A363813, A006012.

Formula

The generating function F=F(x) satisfies the equation x^4*(x - 2)^2*F^4 + x*(x - 2)*(4*x^3 - 7*x^2 + 6*x - 1)*F^3 + (2*x^4 - x^3 - 2*x^2 + 5*x - 1)*F^2 - (4*x^3 - 7*x^2 + 6*x - 1)*F + x^2 = 0.

A363810 Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-14-3, and 4-5-3-1-2.

Original entry on oeis.org

1, 1, 2, 6, 21, 79, 306, 1196, 4681, 18308, 71564, 279820, 1095533, 4298463, 16913428, 66769536, 264526329, 1051845461, 4197832133, 16813161765, 67571221016, 272448598737, 1101876945673, 4469106749281, 18174503562880, 74093063050412, 302753929958872
Offset: 0

Views

Author

Andrei Asinowski, Jun 23 2023

Keywords

Comments

Equivalently, for n>0, the number of separable permutations of [n] that avoid 2-14-3 and 2-1-3-5-4.
The number of guillotine rectangulations (with respect to the weak equivalence) that avoid the geometric patterns "5" and "8". See the Merino and Mütze reference, Table 3, entry "123458".

Crossrefs

Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference: A006318, A106228, A363809, A078482, A033321, A363811, A363812, A363813, A006012.

Programs

  • Maple
    with(gfun): seq(coeff(algeqtoseries(x^8*(-2+x)^2*F^4 - x^3*(x-1)*(-2+x)*(x^5-7*x^4+4*x^3-6*x^2+5*x-1)*F^3 - x*(x-1)*(4*x^7-22*x^6+37*x^5-42*x^4+53*x^3-35*x^2+10*x-1)*F^2 - (5*x^6-16*x^5+15*x^4-28*x^3+23*x^2-8*x+1)*(x-1)^2*F - (2*x^5-5*x^4+4*x^3-10*x^2+6*x-1)*(x-1)^2, x, F, 32, true)[1], x, n+1), n = 0..30); # Vaclav Kotesovec, Jun 24 2023

Formula

The generating function F=F(x) satisfies the equation x^8*(x - 2)^2*F^4 - x^3*(x - 1)*(x - 2)*(x^5 - 7*x^4 + 4*x^3 - 6*x^2 + 5*x - 1)*F^3 - x*(x - 1)*(4*x^7 - 22*x^6 + 37*x^5 - 42*x^4 + 53*x^3 - 35*x^2 + 10*x - 1)*F^2 - (5*x^6 - 16*x^5 + 15*x^4 - 28*x^3 + 23*x^2 - 8*x + 1)*(x - 1)^2*F - (2*x^5 - 5*x^4 + 4*x^3 - 10*x^2 + 6*x - 1)*(x - 1)^2 = 0.

A363811 Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-3-5-4, and 4-5-3-1-2.

Original entry on oeis.org

1, 1, 2, 6, 22, 88, 362, 1488, 6034, 24024, 93830, 359824, 1357088, 5043260, 18501562, 67120024, 241169322, 859450004, 3041415520, 10699090888, 37448249502, 130518538696, 453276141238, 1569476495000, 5420784841936, 18683861676756, 64286814548706
Offset: 0

Views

Author

Andrei Asinowski, Jun 23 2023

Keywords

Comments

Equivalently, for n>0, the number of separable permutations of [n] that avoid 2-1-3-5-4 and 4-5-3-1-2.
The number of guillotine rectangulations (with respect to the weak equivalence) that avoid the geometric patterns "7" and "8". See the Merino and Mütze reference, Table 3, entry "123478".

Crossrefs

Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference: A006318, A106228, A363809, A078482, A033321, A363810, A363812, A363813, A006012.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)*(1 - 16*x + 109*x^2 - 410*x^3 + 923*x^4 - 1256*x^5 + 988*x^6 - 400*x^7 + 66*x^8 - 2*x^9)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2*(1 - 2*x)^4),{x,0,26}],x] (* Stefano Spezia, Jun 24 2023 *)

Formula

G.f.: (1 - x)*(1 - 16*x + 109*x^2 - 410*x^3 + 923*x^4 - 1256*x^5 + 988*x^6 - 400*x^7 + 66*x^8 - 2*x^9)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2*(1 - 2*x)^4).

A363812 Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-4-3, and 3-41-2.

Original entry on oeis.org

1, 1, 2, 6, 20, 69, 243, 870, 3159, 11611, 43130, 161691, 611065, 2325739, 8907360, 34304298, 132770564, 516164832, 2014739748, 7892775473, 31022627947, 122304167437, 483513636064, 1916394053725, 7613498804405, 30313164090695
Offset: 0

Views

Author

Andrei Asinowski, Jun 23 2023

Keywords

Comments

Equivalently, for n>0, the number of separable permutations of [n] that avoid 2-1-4-3 and 3-41-2.
The number of guillotine rectangulations (with respect to the weak equivalence) that avoid the geometric patterns "5", "6", "7". See the Merino and Mütze reference, Table 3, entry "1234567".

Crossrefs

Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference: A006318, A106228, A363809, A078482, A033321, A363810, A363811, A363813, A006012.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 3*x + 3*x^2 - Sqrt[1 - 6*x + 7*x^2 + 2*x^3 + x^4])/(2*x^2*(2 - x)),{x,0,25}],x] (* Stefano Spezia, Jun 24 2023 *)

Formula

G.f.: (1 - 3*x + 3*x^2 - sqrt(1 - 6*x + 7*x^2 + 2*x^3 + x^4))/(2*x^2*(2 - x)).

A363813 Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-4-3, and 4-5-3-1-2.

Original entry on oeis.org

1, 1, 2, 6, 21, 78, 295, 1114, 4166, 15390, 56167, 202738, 724813, 2570276, 9052494, 31702340, 110503497, 383691578, 1328039043, 4584708230, 15793983638, 54315199642, 186526735307, 639831906594, 2192754259993, 7509139583560, 25699765092254, 87913948206096
Offset: 0

Views

Author

Andrei Asinowski, Jun 23 2023

Keywords

Comments

Equivalently, for n>0, the number of separable permutations of [n] that avoid 2-1-4-3 and 4-5-3-1-2.
The number of guillotine rectangulations (with respect to the weak equivalence) that avoid the geometric patterns "5", "7", "8". See the Merino and Mütze reference, Table 3, entry "1234578".

Crossrefs

Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference: A006318, A106228, A363809, A078482, A033321, A363810, A363811, A363812, A006012.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 9*x + 29*x^2 - 39*x^3 + 20*x^4 - 3*x^5)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2),{x,0,27}],x] (* Stefano Spezia, Jun 24 2023 *)

Formula

G.f.: (1 - 9*x + 29*x^2 - 39*x^3 + 20*x^4 - 3*x^5)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2).

A078483 G.f.: -2*x/(1 - 5*x - sqrt(1-4*x) + x*sqrt(1-4*x) + 2*x^2).

Original entry on oeis.org

1, 1, 2, 6, 20, 69, 243, 869, 3145, 11491, 42312, 156807, 584288, 2187298, 8221257, 31009841, 117331070, 445174418, 1693270531, 6454992143, 24657428519, 94363587324, 361741068087, 1388892123038, 5340282880156, 20560742443041, 79259430563491, 305889059254747
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2003

Keywords

Comments

Number of data structures of a certain wreath product type.

Crossrefs

Programs

  • Mathematica
    catGF = (1 - Sqrt[1 - 4 x])/(2 x); CoefficientList[Normal[Series[1/(1 - (x + x^2 catGF^3)), {x, 0, 20}]], x] (* David Callan, Feb 06 2016 *)
    CoefficientList[Series[-2 x / (1 - 5 x - Sqrt[1 - 4 x] + x Sqrt[1 - 4 x] + 2 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, May 28 2016 *)
  • Maxima
    a(n):=sum(m*sum(((sum(binomial(j,-2*m-k+2*j)*binomial(m+k,j),j,0,m+k))*binomial(n-m-1,k-1))/(m+k),k,1,n-m),m,1,n)+1; /* Vladimir Kruchinin, Oct 11 2011 */

Formula

From Gary W. Adamson, Jul 14 2011: (Start)
a(n) is the upper left term in M^n, where M is the following infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
a(n) = 1 + Sum_{m=1..n} m*Sum_{k=1..n-m} (1/(m+k)) * ((Sum_{j=0..m+k} binomial(j,-2*m-k+2*j)*binomial(m+k,j))*binomial(n-m-1,k-1)). - Vladimir Kruchinin, Oct 11 2011
G.f.: 1/(1 - (x + x^2 * C(x)^3)) where C(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. for the Catalan numbers A000108. - David Callan, Feb 06 2016
a(n) ~ 3 * 2^(2*n + 2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 20 2019
D-finite with recurrence: n*a(n) +2*(-5*n+4)*a(n-1) +3*(11*n-18)*a(n-2) +(-41*n+102)*a(n-3) +(21*n-64)*a(n-4) +2*(-2*n+7)*a(n-5)=0. - R. J. Mathar, Jan 23 2020

Extensions

Replaced definition with g.f. given by Atkinson and Still (2002). - N. J. A. Sloane, May 24 2016

A348351 Number of permutations of [n] avoiding the patterns 2-41-3, 3-14-2, 2-14-3, and 3-41-2.

Original entry on oeis.org

1, 1, 2, 6, 20, 72, 274, 1088, 4470, 18884, 81652, 360054, 1614618, 7346688, 33856008, 157777908, 742637416
Offset: 0

Views

Author

Manfred Scheucher, Oct 20 2021

Keywords

Comments

Also the number of one-sided rectangulations.

References

  • L. J. Leifheit, Combinatorial Properties of Rectangulations, Master's thesis, Technische Universität Berlin, 2021.

Crossrefs

Extensions

Name corrected by Manfred Scheucher, May 24 2023
a(0)=1 prepended by Alois P. Heinz, Feb 05 2024
Showing 1-10 of 12 results. Next