A078495 a(n) = (a(n-1) * a(n-6) + a(n-3) * a(n-4)) / a(n-7) (a variant of Somos-7).
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 6, 12, 24, 72, 144, 288, 864, 3456, 10368, 41472, 124416, 497664, 2985984, 17915904, 71663616, 429981696, 2579890176, 20639121408, 185752092672, 1486016741376, 8916100448256, 106993205379072
Offset: 0
References
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
Programs
-
Haskell
a078495 n = a078495_list !! n a078495_list = [1, 1, 1, 1, 1, 1, 1] ++ zipWith div (foldr1 (zipWith (+)) (map b [1,3])) a078495_list where b i = zipWith (*) (drop i a078495_list) (drop (7-i) a078495_list) -- Reinhard Zumkeller, May 05 2013
-
Magma
I:=[1,1,1,1,1,1,1]; [n le 7 select I[n] else (Self(n-1)*Self(n-6) + Self(n-3)*Self(n-4))/Self(n-7): n in [1..30]]; // G. C. Greubel, Feb 21 2018
-
Mathematica
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==1,a[n] == (a[n-1]*a[n-6]+a[n-3]*a[n-4])/a[n-7]},a,{n,40}] (* Harvey P. Dale, Apr 20 2012 *)
-
PARI
{a(n) = if( n<0, a(6-n), if( n<7, 1, (a(n-1) * a(n-6) + a(n-3) * a(n-4)) / a(n-7)))};
-
PARI
{a(n) = 2^(b(n-9) + b(n-7)) * 3^b(n-8)}; {b(n) = (n^2 + 10*n + 1 - n%2*13) \ 60 + 1}; /* b(n) = A025795(n) */
Formula
a(n) = 144 * a(n-6) * a(n-10) / a(n-16), a(n) = a(6-n) for all n in Z.
Comments