cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A268199 Somos's sequence {b(3,n)} defined in comment in A078495: a(0)=a(1)=...=a(8)=1; for n>=9, a(n)=(a(n-1)*a(n-8)+a(n-4)*a(n-5))/a(n-9).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 13, 25, 45, 125, 233, 419, 805, 2252, 8343, 23554, 55889, 195533, 514781, 1769117, 6540689, 31873013, 162776741, 568710437, 1840702289, 10169970946, 53308101423, 363030298268, 1933899726085, 12286029791291
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 9 select 1 else (Self(n-1)*Self(n-8) + Self(n-4)*Self(n-5)) /Self(n-9): n in [1..40]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[3,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 16 2016 *)
    a[ n_] := a[n] = Which[ n<0, a[8-n], n<9, 1, True, (a[n - 1] a[n - 8] + a[n - 4] a[n - 5]) / a[n - 9]]; (* Michael Somos, Nov 16 2016 *)
  • PARI
    {a(n) = if(n<= 8, 1, (a(n-1)*a(n-8)+a(n-4)*a(n-5))/a(n-9))};
    for(n=1,40, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

Formula

a(n) = a(8-n) for all n in Z. - Michael Somos, Nov 16 2016

A271949 Somos's sequence {b(4,n)} defined in comment in A078495: a(0)=a(1)=...=a(10)=1; for n>=11, a(n)=(a(n-1)*a(n-10)+a(n-5)*a(n-6))/a(n-11).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 14, 26, 46, 76, 200, 356, 596, 1044, 1952, 5136, 17888, 48376, 109520, 225248, 724672, 1749280, 5359328, 18277312, 57803136, 235710976, 1067767168, 3411743616, 9748806656, 29696723456, 156028988416
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 11 select 1 else (Self(n-1)*Self(n-10) + Self(n-5)*Self(n- 6))/Self(n-11): n in [1..30]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[4,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 17 2016 *)
    RecurrenceTable[{Table[a[d]==1,{d,0,10}],a[n]==(a[n-1]a[n-10]+ a[n-5]a[n-6])/ a[n-11]},a,{n,50}] (* Harvey P. Dale, Oct 18 2021 *)
  • PARI
    {a(n) = if(n< 11, 1, (a(n-1)*a(n-10) + a(n-5)*a(n-6))/a(n-11))};
    for(n=0,30, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

A271950 Somos's sequence {b(5,n)} defined in comment in A078495: a(0)=a(1)=...=a(12)=1; for n>=13, a(n)=(a(n-1)*a(n-12)+a(n-6)*a(n-7))/a(n-13).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 15, 27, 47, 77, 119, 301, 519, 827, 1351, 2345, 4263, 10598, 35021, 91652, 200923, 396578, 742721, 2258305, 5126953, 14354017, 45716169, 138331649, 377080865, 1330892225, 5490413305, 16470110241
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 13 select 1 else ((Self(n-1)*Self(n-12) + Self(n-6)*Self(n- 7) )/Self(n-13)): n in [1..40]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[5,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 17 2016 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]== a[8]== a[9]== a[10]== a[11] ==a[12]==1,a[n]==(a[n-1]a[n-12]+a[n-6]a[n-7])/a[n-13]},a,{n,50}] (* Harvey P. Dale, May 01 2018 *)
  • PARI
    {a(n) = if(n< 12, 1, (a(n-1)*a(n-12) + a(n-6)*a(n-7))/a(n-13))};
    for(n=0,40, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

A271952 Somos's sequence {b(6,n)} defined in comment in A078495: a(0)=a(1)=...=a(14)=1; for n>=15, a(n)=(a(n-1)*a(n-14)+a(n-7)*a(n-8))/a(n-15).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 28, 48, 78, 120, 176, 432, 728, 1120, 1736, 2832, 4864, 8576, 20224, 63808, 162624, 348224, 668288, 1204736, 2114560, 6175744, 13394432, 34860544, 104595968, 304683008, 807587840
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 15 select 1 else (Self(n-1)*Self(n-14)+Self(n-7)*Self(n-8))/Self(n-15): n in [1..60]]; // G. C. Greubel, Jul 30 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[6,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 17 2016 *)
  • PARI
    {a(n) = if(n<= 15, 1, (a(n-1)*a(n-14) + a(n-7)*a(n-8))/a(n-15))}; for(n=1,50, print1(a(n), ", ")) \\ G. C. Greubel, Jul 30 2018
    

A271954 Somos's sequence {b(7,n)} defined in comment in A078495: a(0)=a(1)=...=a(16)=1; for n>=17, a(n)=(a(n-1)*a(n-16)+a(n-8)*a(n-9))/a(n-17).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 17, 29, 49, 79, 121, 177, 249, 597, 989, 1483, 2209, 3425, 5589, 9447, 16137, 36240, 109683, 273382, 574885, 1081260, 1898415, 3213378, 5381793, 15251949, 31924773, 78189885
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 17 select 1 else (Self(n-1)*Self(n-16)+Self(n-8)*Self(n-9))/Self(n-17): n in [1..60]]; // G. C. Greubel, Jul 30 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[7,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 17 2016 *)
  • PARI
    {a(n) = if(n<= 17, 1, (a(n-1)*a(n-16) + a(n-8)*a(n-9))/a(n-17))}; for(n=1,50, print1(a(n), ", ")) \\ G. C. Greubel, Jul 30 2018
    

A271955 Somos's sequence {b(8,n)} defined in comment in A078495: a(0)=a(1)=...=a(18)=1; for n>=19, a(n)=(a(n-1)*a(n-18)+a(n-9)*a(n-10))/a(n-19).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 30, 50, 80, 122, 178, 250, 340, 800, 1308, 1924, 2780, 4136, 6452, 10476, 17348, 28720, 61664, 179696, 439304, 910464, 1686704, 2905792, 4793624, 7753616, 12537856
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 19 select 1 else (Self(n-1)*Self(n-18)+Self(n-9)*Self(n-10))/Self(n-19): n in [1..60]]; // G. C. Greubel, Jul 30 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[8,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 17 2016 *)
  • PARI
    {a(n) = if(n<= 19, 1, (a(n-1)*a(n-18) + a(n-9)*a(n-10))/a(n-19))}; for(n=1,50, print1(a(n), ", ")) \\ G. C. Greubel, Jul 30 2018
    

A272038 Somos's sequence {b(9,n)} defined in comment in A078495: a(0)=a(1)=...=a(20)=1; for n>=21, a(n)=(a(n-1)*a(n-20)+a(n-10)*a(n-11))/a(n-21).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 19, 31, 51, 81, 123, 179, 251, 341, 451, 1045, 1691, 2451, 3459, 4977, 7467, 11679, 18755, 30349, 48763, 100474, 282777, 679512, 1391391, 2547414, 4327101
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Ruby
    def b(k, n)
      b = Array.new(2 * k + 3, 1)
      (2 * k + 3..n).each{|i|
        j = (b[i - 1] * b[i - 2 * k - 2] + b[i - k - 1] * b[i - k - 2]) / b[i - 2 * k - 3].to_r
        j = j.to_i if j.denominator == 1
        b[i] = j
      }
      b[0..n]
    end
    p b(9, n) # Seiichi Manyama, May 04 2016

A006723 Somos-7 sequence: a(n) = (a(n-1) * a(n-6) + a(n-2) * a(n-5) + a(n-3) * a(n-4)) / a(n-7), a(0) = ... = a(6) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 5, 9, 17, 41, 137, 769, 1925, 7203, 34081, 227321, 1737001, 14736001, 63232441, 702617001, 8873580481, 122337693603, 1705473647525, 22511386506929, 251582370867257, 9254211194697641, 215321535159114017
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006723 n = a006723_list !! n
    a006723_list = [1,1,1,1,1,1,1] ++
      zipWith div (foldr1 (zipWith (+)) (map b [1..3])) a006723_list
      where b i = zipWith (*) (drop i a006723_list) (drop (7-i) a006723_list)
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    I:=[1,1,1,1,1,1,1]; [n le 7 select I[n] else (Self(n-1)*Self(n-6) + Self(n-2)*Self(n-5) + Self(n-3)*Self(n-4))/Self(n-7): n in [1..30]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==1,a[n] == (a[n-1]a[n-6]+a[n-2]a[n-5]+a[n-3]a[n-4])/a[n-7]},a,{n,30}] (* Harvey P. Dale, Jan 19 2012 *)
  • PARI
    {a(n) = my(v); if( n<0, n = 6-n); if( n<7, 1, n++; v = vector(n, k, 1); for( k=8, n, v[k] = (v[k-1] * v[k-6] + v[k-2] * v[k-5] + v[k-3] * v[k-4]) / v[k-7]); v[n])};
    
  • Python
    from gmpy2 import divexact
    A006723 = [1,1,1,1,1,1,1]
    for n in range(7,101):
        A006723.append(divexact(A006723[n-1]*A006723[n-6]+A006723[n-2]*A006723[n-5]+A006723[n-3]*A006723[n-4],A006723[n-7]))
    # Chai Wah Wu, Sep 01 2014
    

Formula

a(6 - n) = a(n) for all n in Z.
a(n) = ((8-2*(-1)^n)*a(n-5)*a(n-3)-a(n-4)^2)/a(n-8). - Bruno Langlois, Aug 09 2016

Extensions

More terms from James A. Sellers, Aug 22 2000

A060656 a(n) = 2*a(n-1)*a(n-2)/a(n-3), with a(0)=a(1)=1.

Original entry on oeis.org

1, 1, 2, 4, 16, 64, 512, 4096, 65536, 1048576, 33554432, 1073741824, 68719476736, 4398046511104, 562949953421312, 72057594037927936, 18446744073709551616, 4722366482869645213696, 2417851639229258349412352
Offset: 0

Views

Author

Henry Bottomley, Apr 18 2001

Keywords

Comments

a(n+1) is the Hankel transform of A135052. - Paul Barry, Nov 15 2007
a(n+1) is the Hankel transform of the aerated large Schroeder numbers. a(n) and a(n+1) both satisfy the trivial Somos-4 recurrence u(n)=4*u(n-2)^2/u(n-4). Associated with the elliptic curve y^2=1-6x^2+x^4 via Schroeder numbers. - Paul Barry, Dec 08 2009
Hankel transform of A089324. - Paul Barry, Mar 01 2010
a(n+1) is the number of n X n binary matrices that are symmetric about both diagonals (bisymmetric). For the derivation of this result, see the link below. - Dennis P. Walsh, Apr 03 2014
1 followed by {a(n-1)}A078495).%20-%20_Vladimir%20Shevelev">(n>=1) is the Somos-3 sequence: b(0)=b(1)=b(2)=1;for n>=3, b(n)=2*b(n-1)*b(n-2)/b(n-3) (cf. comment in A078495). - _Vladimir Shevelev, Apr 20 2016
If the Hankel transform is defined as in the link 'Sequence transformations' then a(n) is the Hankel transform of A151374. - Peter Luschny, Nov 30 2016

Examples

			a(6) = 2*64*16/4 = 512.
G.f. = 1 + x + 2*x^2 + 4*x^3 + 16*x^4 + 64*x^5 + 512*x^6 + 4096*x^7 + ...
		

Crossrefs

Programs

  • Maple
    A060656:=n->2^floor(n^2/4); seq(A060656(n), n=0..20); # Wesley Ivan Hurt, Apr 30 2014
  • Mathematica
    a[ n_] := 2^Quotient[n^2, 4]; (* Michael Somos, Jan 24 2014 *)
    nxt[{a_,b_,c_}]:={b,c,(2c*b)/a}; NestList[nxt,{1,1,2},20][[All,1]] (* Harvey P. Dale, Nov 26 2017 *)
  • PARI
    { for (n=0, 100, write("b060656.txt", n, " ", 2^(n^2\4)); ) } \\ Harry J. Smith, Jul 09 2009
    
  • PARI
    {a(n) = 2^(n^2\4)}; /* Michael Somos, Jan 24 2014 */

Formula

a(n) = 2^floor( n^2/4 ) = a(n - 1) * 2^floor( n/2 ) = a(n - 2) * 2^(n - 1) = a(n - 1) * A016116(n) = 2^A002620(n).
0 = a(n) * a(n+3) + a(n+1) * ( -2*a(n+2) ) for all n in Z. - Michael Somos, Jan 24 2014
0 = a(n) * a(n+4) + a(n+2) * ( -4*a(n+2) ) for all n in Z. - Michael Somos, Jan 24 2014

A025795 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 9, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 21, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 37, 38, 40, 42, 43, 45, 47, 48, 51, 52, 54, 56, 58, 60, 62, 64, 66, 68, 71, 72, 75, 77, 79, 82, 84, 86, 89, 91, 94, 96, 99, 101, 104
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of ways to pay n dollars with coins of two, three and five dollars. E.g., a(0)=1 because there is one way to pay: with no coin; a(1)=0 no possibility; a(2)=1 (2=1*2); a(3)=1 (3=1*3); a(4)=1 (4=2*2) a(5)=2 (5=3+2=1*5) ... - Richard Choulet, Jan 20 2008
a(n) is the number of partitions of n into parts 2, 3, and 5. See the preceding comment by R. Choulet. - Wolfdieter Lang, Mar 15 2012

Examples

			G.f. = 1 + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := Quotient[n^2 + 10 n + 1 - 13 Mod[n, 2], 60] + 1; (* Michael Somos, Nov 17 2017 *)
  • PARI
    {a(n) = (n^2 + 10*n + 1 - n%2 * 13) \60 + 1} /* Michael Somos, Feb 05 2008 */

Formula

G.f.: 1/((1-x^2)*(1-x^3)*(1-x^5)).
Let [b(1); b(2); ...; b(p)] denote a periodic sequence: e.g., [0; 1] defines the sequence c such that c(0)=c(2)=...=c(2*k)=0 and c(1)=c(3)=...=c(2*k+1)=1. Then a(n)=0.25*[0; 1] - (1/3)*[1; 0; 0] + (1/5)*[0; 1; 1; 0; 3] + ((n+1)*(n+2)/60) + (7*(n+1)/60). - Richard Choulet, Jan 20 2008
If ||A|| is the nearest number to A (A not a half-integer) we also have a(n) = ||((n+1)*(n+9)/60) + (1/5)[0; 1; 1; 0; 3]. - Richard Choulet, Jan 20 2008
a(n) = 77/360 + 7*(n+1)/60 + (n+2)*(n+1)/60 + (-1)^n/8 - (2/9)*cos(2*(n+2)*Pi/3) + (4/(5*sqrt(5)+25))*cos(2*n*Pi/5) - (4/(5*sqrt(5)-25))*cos(4*n*Pi/5). - Richard Choulet, Jan 20 2008
Euler transform of length 5 sequence [0, 1, 1, 0, 1]. - Michael Somos, Feb 05 2008
a(n) = a(-10-n) for all n in Z. - Michael Somos, Feb 25 2008
a(n) - a(n-2) = A008676(n). a(n) - a(n-5) = A103221(n) = A008615(n+2). A078495(n) = 2^(a(n-7) + a(n-9)) * 3^a(n-8) for all n in Z. - Michael Somos, Nov 17 2017, corrected Jun 23 2021
a(n)-a(n-3) = A008616(n). - R. J. Mathar, Jun 23 2021
a(n) = floor((n^2 + 10*n + 6*(9+(-1)^n))/60). - Hoang Xuan Thanh, Jun 15 2025
Showing 1-10 of 10 results.