cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078567 Number of arithmetic subsequences of [1..n] with length > 1.

Original entry on oeis.org

0, 1, 4, 9, 17, 27, 41, 57, 77, 100, 127, 156, 191, 228, 269, 314, 364, 416, 474, 534, 600, 670, 744, 820, 904, 991, 1082, 1177, 1278, 1381, 1492, 1605, 1724, 1847, 1974, 2105, 2245, 2387, 2533, 2683, 2841, 3001, 3169, 3339, 3515, 3697, 3883, 4071, 4269, 4470
Offset: 1

Views

Author

Robert E. Sawyer (rs.1(AT)mindspring.com)

Keywords

Comments

The number of arithmetic subsequences of [1..n] with successive-term increment i and length k is n-i*(k-1) for i > 0, k > 0, n > i*(k-1).
Appears to be the partial sums of A006218. - N. J. A. Sloane, Nov 24 2008
The O(n^(1/2)) formula can be derived via Dirichlet hyperbola method (see Wikipedia link below) applied to a(n) = Sum_{k=1..n-1} Sum_{i*j=k} (sqrt(n)*sqrt(n)-i*j), where we've written the formula in this form to show which functions are being Dirichlet convoluted. - Daniel Hoying, May 31 2020
Apart from initial zero this is the convolution of A341062 and the nonzero terms of A000217. - Omar E. Pol, Feb 16 2021

Examples

			a(2): [1,2]; a(3): [1,2],[1,3],[2,3],[1,2,3].
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<1, [0$2],
          (p-> p+[numtheory[tau](n), p[1]])(b(n-1)))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=1..55);  # Alois P. Heinz, Oct 07 2021
  • Mathematica
    a[n_]:=-(-1 + n) n + Sum[-(1/2) Ceiling[n/(1 + k)] (-1 - k - 2 n + (1 + k) Ceiling[n/(1 + k)]), {k, 0, n - 2}]; (* Lorenz H. Menke, Jr., Feb 17 2017 *)
    Table[Sum[(n - i) DivisorSigma[0, i], {i, n}], {n, 47}] (* or *)
    With[{nn = 46}, {0}~Join~Table[First[ListConvolve @@ Transpose@ Take[#, n]], {n, nn}] &@ Table[{n, DivisorSigma[0, n]}, {n, nn}]] (* Michael De Vlieger, Feb 18 2017 *)
  • PARI
    a(n)=sum(i=1,n, numdiv(i)*(n-i)) \\ Charles R Greathouse IV, Feb 18 2017
    
  • PARI
    a(n)={n--; sqrtint(n)^2*(1/4 * (1+sqrtint(n))^2-n-1) + sum(i=1, sqrtint(n), (n\i)*(2*n + 2 - i*(1+n\i)))} \\ Andrew Howroyd, May 31 2020
    
  • Python
    from math import isqrt
    def A078567(n):
        m = isqrt(n-1)
        return m**2*(1+m)**2//4-m**2*n+sum((n-1)//i*(2*n-i*(1+(n-1)//i)) for i in range(1,m+1)) # Chai Wah Wu, Oct 07 2021

Formula

a(n) = Sum_{i=1..n-1} Sum_{j=1..floor((n-1)/i)} (n - i*j).
Convolution of A000027 and A000005. - Vladeta Jovovic, Apr 08 2006
Row sums of triangle A134546. - Gary W. Adamson, Oct 31 2007
a(n) = Sum_{i=1..n} (n-i) * A000005(i). - Wesley Ivan Hurt, May 08 2016
G.f.: (x/(1 - x)^2)*Sum_{k>=1} x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 02 2017
a(n) = Sum_{k=1..n-1} Sum_{i=1..n-1} floor(k/i). - Wesley Ivan Hurt, Sep 14 2017
a(n) = Sum_{k=1..n-1} Sum_{i|k} (n-k). - Daniel Hoying, May 26 2020
a(n+1) = floor(sqrt(n))^2*(1/4*(1+floor(sqrt(n)))^2 - n - 1) + Sum_{i=1..floor(sqrt(n))} floor(n/i)*(2*n + 2 - i*(1+floor(n/i))). - Daniel Hoying, May 31 2020