A090781 Numbers that can be expressed as the difference of the squares of primes in just one distinct way.
5, 16, 21, 24, 40, 45, 48, 96, 112, 117, 144, 160, 165, 192, 264, 280, 285, 288, 336, 352, 357, 504, 520, 525, 648, 816, 832, 837, 936, 952, 957, 1152, 1344, 1360, 1365, 1368, 1440, 1656, 1672, 1677, 1752, 1824, 1840, 1845, 1872, 1968, 2184, 2200, 2205, 2328
Offset: 1
Keywords
Examples
5 = 3^2 - 2^2.
Links
- T. D. Noe, Table of n, a(n) for n=1..908
Programs
-
Mathematica
With[{nn=100},Take[Sort[Transpose[Select[Tally[Last[#]-First[#]&/@ Subsets[ Prime[Range[nn]]^2,{2}]],Last[#]==1&]][[1]]],nn]] (* Harvey P. Dale, Apr 05 2014 *)
-
Python
from sympy import primerange from collections import Counter def aupto(limit): sqps = [p*p for p in primerange(1, limit//2+1)] ways = Counter(b-a for i, a in enumerate(sqps) for b in sqps[i+1:]) return sorted(k for k in ways if k <= limit and ways[k] == 1) print(aupto(2328)) # Michael S. Branicky, May 16 2021