A046661 Number of n-step self-avoiding walks on the square lattice with first step specified.
1, 3, 9, 25, 71, 195, 543, 1479, 4067, 11025, 30073, 81233, 220375, 593611, 1604149, 4311333, 11616669, 31164683, 83779155, 224424291, 602201507, 1611140121, 4316653453, 11536599329, 30870338727, 82428196555, 220329372907
Offset: 1
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..79
- G. T. Barkema and S. Flesia, Two-dimensional oriented self-avoiding walks with parallel contacts, J. Stat. Phys. 85 (1996) no 3/4, 363-381. [a(30) to a(34)]
- D. Bennet-Wood, J. L. Cardy, S. Flesia, A. J. Guttmann et al., Oriented self-avoiding walks with orientation-dependent interactions, J. Phys. A: Math. Gen. 28 (1995) no 18, 5143-5163. [up to a(29)]
- V. Hart, How to Snakes, Youtube Video (2011).
Programs
-
Mathematica
(* b = A001411 *) mo = Tuples[{-1, 1}, 2]; b[0] = 1; b[tg_, p_:{{0, 0}}] := b[tg, p] = Block[{e, mv = Complement[Last[p] + #& /@ mo, p]}, If[tg == 1, Length[mv], Sum[b[tg - 1, Append[p, e]], {e, mv}]]]; a[n_] := b[n]/4; Table[an = a[n]; Print[an]; an, {n, 1, 16}] (* Jean-François Alcover, Nov 02 2018, after Giovanni Resta in A001411 *)
Comments