cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A078803 Triangular array T given by T(n,k) = number of compositions of n into k parts, each in the set {1,2,3}.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 0, 3, 3, 1, 0, 2, 6, 4, 1, 0, 1, 7, 10, 5, 1, 0, 0, 6, 16, 15, 6, 1, 0, 0, 3, 19, 30, 21, 7, 1, 0, 0, 1, 16, 45, 50, 28, 8, 1, 0, 0, 0, 10, 51, 90, 77, 36, 9, 1, 0, 0, 0, 4, 45, 126, 161, 112, 45, 10, 1, 0, 0, 0, 1, 30, 141, 266, 266, 156, 55, 11, 1, 0, 0, 0, 0, 15, 126
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2002

Keywords

Comments

Number of lattice paths from (0,0) to (n,k) using steps (1,1), (2,1), (3,1). - Joerg Arndt, Jul 05 2011
Reversing the rows produces A078802. Row sums: A000073.
Number of tribonacci binary words of length n-1 having k-1 1's. A tribonacci binary word is a binary word having no three consecutive 0's. Example: T(6,3)=7 because we have 00101,00110,01001,01010,01100,10010 and 10100. - Emeric Deutsch, Jun 16 2007
This is the Riordan array (1,x+x^2+x^3)(A071675) without its column k=0. - Vladimir Kruchinin, Feb 10 2011

Examples

			T(5,2) = 2 counts the compositions 2+3 and 3+2.
Triangle begins
  1;
  1, 1;
  1, 2, 1;
  0, 3, 3, 1;
  0, 2, 6, 4, 1;
  0, 1, 7, 10, 5, 1;
  0, 0, 6, 16, 15, 6, 1;
  0, 0, 3, 19, 30, 21, 7, 1;
  0, 0, 1, 16, 45, 50, 28, 8, 1;
  0, 0, 0, 10, 51, 90, 77, 36, 9, 1;
  0, 0, 0, 4, 45, 126, 161, 112, 45, 10, 1;
  0, 0, 0, 1, 30, 141, 266, 266, 156, 55, 11, 1;
		

References

  • Clark Kimberling, Binary words with restricted repetitions and associated compositions of integers, in Applications of Fibonacci Numbers, vol.10, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, William Webb, editor, Congressus Numerantium, Winnipeg, Manitoba 194 (2009) 141-151.

Crossrefs

Cf. A027907, A078802, A030528 (parts <=2), A213887 (parts <=4), A213888 (parts <=5), A061676 and A213889 (parts <=6).

Programs

  • Maple
    A078803 := proc(n,k) add( binomial(j,n-3*k+2*j)*binomial(k,j),j=0..k) ; end proc:
    # R. J. Mathar, Feb 22 2011
  • Mathematica
    nn=8;CoefficientList[Series[1/(1-y(x+x^2+x^3)),{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Jan 08 2013 *)

Formula

T(n, k) = t(n-1, n-k), for 1<=k<=n, for n>=1, where the array t is given by A078802.
G.f.: 1/(1-t*z*(1+z+z^2))-1. - Emeric Deutsch, Mar 10 2004
T(n,k) = Sum_{j=0..k} C(j,n-3*k+2*j)*C(k,j). - Vladimir Kruchinin, Feb 10 2011

Extensions

More terms from Emeric Deutsch, Jun 16 2007

A082601 Tribonacci array: to get the next row, right-adjust the previous 3 rows and add them, then append a final 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 0, 0, 1, 4, 6, 2, 0, 0, 1, 5, 10, 7, 1, 0, 0, 1, 6, 15, 16, 6, 0, 0, 0, 1, 7, 21, 30, 19, 3, 0, 0, 0, 1, 8, 28, 50, 45, 16, 1, 0, 0, 0, 1, 9, 36, 77, 90, 51, 10, 0, 0, 0, 0, 1, 10, 45, 112, 161, 126, 45, 4, 0, 0, 0, 0, 1, 11, 55, 156, 266, 266, 141, 30, 1, 0
Offset: 0

Views

Author

Gary W. Adamson, May 24 2003

Keywords

Comments

Coefficients of tribonacci polynomials: t_0 = 1, t_1 = x, t_2 = x^2 + x, t_n = x*(t_{n-1} + t_{n-2} + t_{n-3}).
Row sums are tribonacci numbers.
From Petros Hadjicostas, Jun 10 2020: (Start)
To prove a Swamy inequality for the above tribonacci polynomials, we use Guilfoyle's (1967) technique. We write t_n as the determinant of an n X n matrix and then apply Hadamard's inequality.
Since x*t_{n-3} + x*t_{n-2} + x*t_{n-1} - t_n = 0 (with the above initial conditions), we may prove that for n >= 3, t_n = det(A_n), where A_n is the n X n matrix A_n = [[x,-1,0,0,0,...,0,0,0,0,0], [x,x,-1,0,0,...,0,0,0,0,0], [x,x,x,-1,0,...,0,0,0,0,0], [0,x,x,x,-1,...,0,0,0,0,0], ..., [0,0,0,0,0,...,x,x,x,-1,0], [0,0,0,0,0,...,0,x,x,x,-1], [0,0,0,0,0,...,0,0,x,x,x]]).
Using Hadamard's inequality, we obtain t_n^2 <= 3*x^2*(2*x^2 + 1)*(x^2 + 1)*(3*x^2 + 1)^(n-3) for all integers n >= 3 and all real x. (Of course, it is not true for n = 0, 1, 2.)
Guilfoyle's technique can be applied for Werner Schulte's polynomial sequence below, i.e., for p^2*U(n) + p*q*U(n+1) + q^2*U(n+2) - U(n+3) = 0. The first three rows and first three columns of the matrix A_n depend on the initial conditions. We omit the details. (End)

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  1,  0;
  1,  3,  3,  0,  0;
  1,  4,  6,  2,  0,  0;
  1,  5, 10,  7,  1,  0,  0;
  ...
From _Petros Hadjicostas_, Jun 10 2020: (Start)
The n-th tribonacci polynomial is t_n = Sum_{k=0..n} T(n,k)*x^(n-k), so, for example:
t_4 = x^4 + 3*x^3 + 3*x^2;
t_5 = x^5 + 4*x^4 + 6*x^3 + 2*x^2;
t_6 = x^6 + 5*x^5 + 10*x^4 + 7*x^3 + x^2;
t_7 = x^7 + 6*x^6 + 15*x^5 + 16*x^4 + 6*x^3.
We have
t_4 = det([[x,-1,0,0]; [x,x,-1,0]; [x,x,x,-1]; [0,x,x,x]]);
t_5 = det([[x,-1,0,0,0]; [x,x,-1,0,0]; [x,x,x,-1,0]; [0,x,x,x,-1]; [0,0,x,x,x]]);
t_6 = det([[x,-1,0,0,0,0]; [x,x,-1,0,0,0]; [x,x,x,-1,0,0]; [0,x,x,x,-1,0]; [0,0,x,x,x,-1]; [0,0,0,x,x,x]]);
t_7 = det([[x,-1,0,0,0,0,0]; [x,x,-1,0,0,0,0]; [x,x,x,-1,0,0,0]; [0,x,x,x,-1,0,0]; [0,0,x,x,x,-1,0]; [0,0,0,x,x,x,-1]; [0,0,0,0,x,x,x]]). (End)
		

References

  • Thomas Koshy, Fibonacci and Lucas numbers with Applications, Vol. 2, Wiley, 2019; see p. 33. [He gives Swamy inequalities for the Fibonacci and the Lucas polynomials. Vol. 1 was published in 2001. - Petros Hadjicostas, Jun 10 2020]

Crossrefs

Closely related to A078802. A better version of A082870. Cf. A000073.
Cf. A002426 (central terms).

Programs

  • Haskell
    a082601 n k = a082601_tabl !! n !! k
    a082601_row n = a082601_tabl !! n
    a082601_tabl = [1] : [1,0] : [1,1,0] : f [0,0,1] [0,1,0] [1,1,0]
       where f us vs ws = ys : f (0:vs) (0:ws) ys where
                          ys = zipWith3 (((+) .) . (+)) us vs ws ++ [0]
    -- Reinhard Zumkeller, Apr 13 2014
  • Maple
    G:=x*y/(1-x-x^2*y-x^3*y^2): Gs:=simplify(series(G,x=0,18)): for n from 1 to 16 do P[n]:=sort(coeff(Gs,x^n)) od: seq(seq(coeff(P[i],y^j),j=1..i),i=1..16);
  • Mathematica
    Table[SeriesCoefficient[x/(1 - x - x^2*y - x^3*y^2), {x, 0, n}, {y, 0, k}], {n, 13}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Feb 22 2017 *)

Formula

G.f.: x/(1 - x - x^2*y - x^3*y^2). - Vladeta Jovovic, May 30 2003
From Werner Schulte, Feb 22 2017: (Start)
T(n,k) = Sum_{j=0..floor(k/2)} binomial(k-j,j)*binomial(n-k,k-j) for 0 <= k and k <= floor(2*n/3) with binomial(i,j) = 0 for iDennis P. Walsh at A078802).
Based on two integers p and q define the integer sequence U(n) by U(0) = 0 and U(1) = 0 and U(n+2) = Sum_{k=0..floor(2*n/3)} T(n,k)*p^k*q^(2*n-3*k) for n >= 0. That yields the g.f. f(p,q,x) = x^2/(1 - q^2*x - p*q*x^2 - p^2*x^3) and the recurrence U(n+3) = q^2*U(n+2) + p*q*U(n+1) + p^2*U(n) for n >= 0 with initial values U(0) = U(1) = 0 and U(2) = 1. For p = q = +/-1, you'll get tribonacci numbers A000073. For p = -1 and q = 1, you'll get A021913. (End)

Extensions

Edited by Anne Donovan and N. J. A. Sloane, May 27 2003
More terms from Emeric Deutsch, May 06 2004

A082870 Tribonacci array.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 4, 6, 2, 1, 5, 10, 7, 1, 1, 6, 15, 16, 6, 1, 7, 21, 30, 19, 3, 1, 8, 28, 50, 45, 16, 1, 1, 9, 36, 77, 90, 51, 10, 1, 10, 45, 112, 161, 126, 45, 4, 1, 11, 55, 156, 266, 266, 141, 30, 1, 1, 12, 66, 210, 414, 504, 357, 126, 15, 1, 13, 78, 275, 615, 882
Offset: 0

Views

Author

Gary W. Adamson, May 24 2003

Keywords

Comments

Row sums are tribonacci numbers.
From Gary W. Adamson, Nov 15 2016: (Start)
With an alternative format:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, 0, ...
1, 2, 3, 2, 1, 0, 0, ...
1, 3, 6, 7, 6, 3, 1, ...
... (where the k-th row is (1 + x + x^2)^k), let q(x) = (r(x) * r(x^3) * r(x^9) * r(x^27) * ...). Then q(x) is the binomial sequence beginning (1, k, ...). Example: (1, 3, 6, 10, ...) = q(x) with r(x) = (1, 3, 6, 7, 3, 1, 0, 0, 0). (End)

Examples

			Triangle begins:
  1,
  1,
  1,  1,
  1,  2,  1,
  1,  3,  3,
  1,  4,  6,  2,
  1,  5, 10,  7,  1,
  1,  6, 15, 16,  6,
		

References

  • Thomas Koshy, <"Fibonacci and Lucas Numbers with Applications">, Wiley, 2001; Chapter 47: Tribonacci Polynomials: ("In 1973, V.E. Hoggat, Jr. and M. Bicknell generalized Fibonacci polynomials to Tribonacci polynomials tx(x)"); Table 47.1, page 534: "Tribonacci Array".

Crossrefs

A082601 is a better version. Cf. A000073, A078802.
Cf. A004396 (row lengths).

Programs

  • Haskell
    a082870 n k = a082870_tabf !! n !! k
    a082870_row n = a082870_tabf !! n
    a082870_tabf = map (takeWhile (> 0)) a082601_tabl
    -- Reinhard Zumkeller, Apr 13 2014

Formula

G.f.: x/(1 - x - x^2*y - x^3*y^2). - Vladeta Jovovic, May 30 2003

Extensions

More terms from Vladeta Jovovic, May 30 2003
Showing 1-3 of 3 results.