A200218
The differences x^3 - y^2 of Danilov's subsequence of good Hall's examples A078933.
Original entry on oeis.org
-297, 548147655, -1019827620252441, 1897387247823873407415, -3530085179800800999132960777, 6567716416847133270037051381858983, -12219223258107727669457593220846745613305, 22733840433256343397153666138928891468676446359
Offset: 1
-
aa = {}; uu = 682 + 61 * Sqrt[125]; Do[vv = Expand[uu^(2 * n - 1)]; tt = ((-1)^n vv[[1]] + 57)/125; xx = (5^5 * tt^2 - 3000 * tt + 719); yy = Round[N[Sqrt[xx^3], 1000]]; dd = xx^3 - yy^2; AppendTo[aa, dd], {n, 1, 10}]; aa
(* Recurrence generator of R. J. Mathar *)
dd = {-297, 548147655, -1019827620252441}; a0 = dd[[1]]; a1 = dd[[2]]; a2 = dd[[3]]; Do[a = a0 + 1860497 * a1 - 1860497 * a2; a0 = a1; a1 = a2; a2 = a; AppendTo[aa, a], {n, 1, 10}]; aa
(* Third one after Lucas numbers formula *)
Table[27/125 (-5 + (-1)^n ((-1)^(n + 1) 6 + LucasL[15 (-1 + 2 n)])), {n, 10}] (* Artur Jasinski, Nov 18 2011*)
A173348
Numbers x such that 0 < |x^7 - y^2| < x^(5/2) for some number y.
Original entry on oeis.org
12, 93, 239, 4896, 4904, 6546, 7806, 9104, 20542, 35962, 43783, 96569, 616400, 635331, 842163, 7888432, 450177181
Offset: 1
Cf.
A078933 (m=2, n=3, Hall's conjecture)
This sequence (m=2, n=7)
-
Solutions[n_,m_,lim_] := Module[{x, y, t={}, pow=n*(1-1/m-1/n)}, Do[y=Round[x^(n/m)]; If[0 < Abs[x^n-y^m]
A179108
Values x for records of minima of positive distance d between a square cubefree integer y and a cube of positive and squarefree integer x and such d = y^2 - x^3.
Original entry on oeis.org
2, 46, 109, 5234, 8158, 720114, 28187351, 110781386, 154319269, 384242766, 390620082, 3790689201, 65589428378
Offset: 1
-
d = 3; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)] + 1; k = m^2 - n^d; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 720114}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; xx (* Artur Jasinski, Oct 30 2011 *)
A116884
Integers k such that 0 < |k^5 - m^2| <= k^(3/2) for some integer m.
Original entry on oeis.org
1, 5, 8, 23, 27, 55, 73, 76, 377, 396, 432, 18219, 18231, 747343, 748635, 5523608, 7626590, 32866452, 82251007, 1133553044, 1778903359, 3664408636, 7208605769, 26149894782
Offset: 1
|432^5 - 3878907^2| = 8217 < 432^(3/2).
A200216
Danilov's sequence of x satisfying 0 < |x^3-y^2| < sqrt(x) with integer (x,y).
Original entry on oeis.org
93844, 322001299796379844, 1114592308630995805123571151844, 3858108676488182444301031186675778188809844, 13354661111806898918013326915229994453818137920195953844
Offset: 1
|93844^3 - (round(sqrt(93844^3)))^2| < sqrt(93844).
- L. V. Danilov, Letter to the Editor, Mat. Zametki, 1984, Volume 36, Issue 3, Pages 457-458.
- L. V. Danilov, Letter to the editor, Math. Notes 36 (3) (1984) 726.
- R. D'Mello, Marshall Hall's Conjecture and Gaps Between Integer Points on Mordell Elliptic Curves, arXiv preprint arXiv:1410.0078 [math.NT], 2014.
-
aa = {}; uu = 682 + 61*Sqrt[125]; Do[vv = Expand[uu^(2*n - 1)]; tt = ((-1)^n vv[[1]] + 57)/125; xx = (5^5*tt^2 - 3000*tt + 719); yy = Round[N[Sqrt[xx^3], 1000]]; dd = xx^3 - yy^2; AppendTo[aa, xx], {n, 1, 6}]; aa
(* second program follows the generator formula *)
data = Table[(7/10 - (6/5)*(-1)^n*(1/2)*(f^(15*(2 n - 1)) - (1/f)^(15 (2 n - 1))) + (1/20)*(f^(30 (2 n - 1)) + (1/f)^(30 (2 n - 1)))) /. f -> GoldenRatio, {n, 1, 6}]; data // FunctionExpand // ExpandAll // Simplify (* Bob Hanlon (hanlonr(AT)cox.net) *)
(* third program uses the Lucas numbers formula *)
Table[7/10 + (-1)^(n + 1) 3/5 LucasL[15*(2 n - 1)] +
1/20 LucasL[30*(2 n - 1)] , {n, 1, 10}] (* Artur Jasinski, Nov 18 2011 *)
-
u = quadunit(20)^5
for(i=1,6, v = u^(2*i-1); t = ((-1)^i * real(v) + 57) / 125; print(5^5*t^2 - 3000*t + 719) ) \\ Noam D. Elkies
-
from sympy import lucas
def A200216(n): return (14+12*(lucas(k:=30*n-15) if n&1 else -lucas(k:=30*n-15))+lucas(k<<1))//20 # Chai Wah Wu, Jun 19 2024
A200217
Danilov's sequence of y values satisfying 0 < |x^3 - y^2| < sqrt(x) with integer (x,y).
Original entry on oeis.org
28748141, 182720147509505842286585077, 1176722513851727970194784616032383058302343205, 7578123615032687003769196301877008424487234722410713810234126013
Offset: 1
-
with(numtheory):
Di := 125 ;
cf := numtheory[cfrac](sqrt(Di),'periodic','quotients') ;
for i from 1 to 220 do
x := nthnumer(cf,i) ;
y := nthdenom(cf,i) ;
rr := x^2-Di*y^2 ;
if rr = -1 then
t := x-5 ;
if (t mod 5) = 2 then
t := -t-10 ;
y := -y ;
end if;
pk := t ;
qk := y ;
yM := qk*(pk^2+pk-1) ;
yM := abs(yM) ;
printf("%d,",yM) ;
end if;
end do: # R. J. Mathar, Nov 15 2011
-
aa = {}; uu = 682 + 61*Sqrt[125]; Do[vv = Expand[uu^(2*n - 1)]; tt = ((-1)^n vv[[1]] + 57)/125; xx = (5^5*tt^2 - 3000*tt + 719); yy = Round[N[Sqrt[xx^3], 1000]]; dd = xx^3 - yy^2; AppendTo[aa, yy], {n, 1, 5}]; aa
(* recurrence formula of R. J. Mathar *)
dd = {28748141, 182720147509505842286585077, 1176722513851727970194784616032383058302343205, 7578123615032687003769196301877008424487234722410713810234126013, 48803313311937248954865638168364942372153001387358275397822506563724900540813098269, 314294607902465331119210305427552029679173295887697814635011836442516313036620521777783545650437642949}; a0 = dd[[1]]; a1 = dd[[2]]; a2 = dd[[3]]; a3 = dd[[4]]; a4 = dd[[5]]; a5 = dd[[6]]; Do[a = 6440022564929296994 a5 + 22291834190970757443015664937985 a4 + -41473935220466903245533179036528718020 a3 + 22291834190970757443015664937985 a2 + 6440022564929296994*a1 - a0; a0 = a1; a1 = a2; a2 = a3 = a4; a5 = a6; a6 = a; AppendTo[aa, a], {n, 1, 10}]; aa (* Artur Jasinski, Nov 15 2011 *)
CoefficientList[Series[-(61 (-1 + x) (471281 - 39648020168249880312376 x - 417898575330317669831476343067314 x^2 - 39648020168249880312376 x^3 + 471281 x^4))/((1 - 6440026026380244498 x + x^2) (1 - 1860498 x + x^2) (1 + 3461452808002 x + x^2)), {x, 0, 10}], x] (* Artur Jasinski, Nov 16 2011 *)
(* Lucas - Fibonacci formula *)
aa = {}; Do[If[n == 1, AppendTo[aa, 15 + 9 LucasL[15 (-1 + 2 n)] + 15 LucasL[30 (-1 + 2 n)] - 6 Fibonacci[15 (-1 + 2 n)] + Fibonacci[30 (-1 + 2 n)]], AppendTo[aa, 15/8 Fibonacci[15 (-1 + 2 n)] - 9/20 Fibonacci[30 (-1 + 2 n)] + 1/40 Fibonacci[45 (-1 + 2 n)]]], {n, 1, 10}]; aa (* Artur Jasinski, Nov 18 2011 *)
A199496
Good examples of a tightened Hall's conjecture: integers x such that 0 < x^3 - y^2 < sqrt(x) for some integer y.
Original entry on oeis.org
367806, 939787, 952764389446, 12438517260105, 35495694227489, 5853886516781223, 23415546067124892, 38115991067861271, 322001299796379844, 9870884617163518770, 42532374580189966073, 51698891432429706382, 601724682280310364065
Offset: 1
A116885
Integers n such that 0<|n^5-m^2|<= n for some integer m.
Original entry on oeis.org
1, 8, 55, 76, 377
Offset: 1
|377^5-2759646^2| = 341 <= 377.
A199497
Distances d=x^3-y^2 for positive good examples of Hall's conjecture: positive integers d < sqrt(x).
Original entry on oeis.org
207, 307, 852135, 2767769, 5190544, 1641843, 105077952, 30032270, 548147655, 1651035656, 1878790553, 4101044247, 13027681441
Offset: 1
A199498
Values y for positive good examples of Hall's conjecture: positive integers d = x^3-y^2 < sqrt(x).
Original entry on oeis.org
223063347, 911054064, 929989991784733049, 43868513629203032816, 211477180624706647625, 447884928428402042307918, 3583079427427216338463344, 7441505802879036345061579, 182720147509505842286585077, 31012309752051601656131750312, 277382747164996776244709473092
Offset: 1
Showing 1-10 of 40 results.
Comments