Original entry on oeis.org
137, 253772063, 472142416783537, 878420022140682133063, 1634298694352222684783778137, 3040609452244043180572708973082863, 5657047804679503550674811676317937783937, 10524926126507566387571141730985597902165021463
Offset: 1
-
I:=[137, 253772063, 472142416783537]; [n le 3 select I[n] else 1860497*Self(n-1)+1860497*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Nov 18 2011
-
aa = {}; uu = 682 + 61*Sqrt[125]; Do[vv = Expand[uu^(2*n - 1)]; tt = ((-1)^n vv[[1]] + 57)/125; xx = (5^5*tt^2 - 3000*tt + 719); yy = Round[N[Sqrt[xx^3], 1000]]; dd = xx^3 - yy^2; AppendTo[aa, Sqrt[(xx + 1)/5]], {n, 1, 20}]; aa
-
x='x+O('x^30); Vec((137 -1116026*x +137*x^2)/(1 - 1860497*x - 1860497*x^2 + x^3)) \\ G. C. Greubel, Jul 10 2018
A078933
Good examples of Hall's conjecture: integers x such that 0 < |x^3 - y^2| < sqrt(x) for some integer y.
Original entry on oeis.org
2, 5234, 8158, 93844, 367806, 421351, 720114, 939787, 28187351, 110781386, 154319269, 384242766, 390620082, 3790689201, 65589428378, 952764389446, 12438517260105, 35495694227489, 53197086958290, 5853886516781223, 12813608766102806, 23415546067124892, 38115991067861271
Offset: 1
|5234^3 - 378661^2| = 17 < sqrt(5234), so 5234 is in the sequence.
- Noam D. Elkies, Rational points near curves and small nonzero |x^3 - y^2| via lattice reduction. Algorithmic Number Theory. Proceedings of ANTS-IV; W. Bosma, ed.; Springer, 2000; pp. 33-63.
- Marshall Hall Jr., The Diophantine equation x^3 - y^2 = k, in Computers in Number Theory; A. O. L. Atkin and B. Birch, eds.; Academic Press, 1971; pp. 173-198.
- Frank A. Stevenson, Table of n, a(n) for n = 1..54
- S. Aanderaa, L. Kristiansen, and H. K. Ruud, Search for good examples of Hall's conjecture, Math. Comp. 87 (2018), 2903-2914.
- Ismael Jimenez Calvo, Marshall Hall's conjecture.
- Ismael Jimenez Calvo and G. Saez Moreno, Approximate Power roots in Z_m, Proceedings of ISC 2001 (Information Security); G. I. Davida and Y. Frankel, eds.; Springer, 2001; pp. 310-323.
- I. Jiminez Calvo, J. Herranz, and G. Saez, A new algorithm to search for small nonzero |x^3-y^2| values, Math. Comp. 76 (268) (2009) 2435-2444.
- L. V. Danilov, Diophantine equation x^3-y^2-k and Hall's conjecture, Math. Notes Acad. Sci. USSR 32 (1982), 617-618.
- L. V. Danilov, Letter to the editors, Mat. Zametki, 36:3 (1984), 457-458.
- L. V. Danilov, Letter to the editor, Mathem. Notes, 36 (3) (1984), 726.
- R. D'Mello, Marshall Hall's Conjecture and Gaps Between Integer Points on Mordell Elliptic Curves, arXiv preprint arXiv:1410.0078 [math.NT], 2014.
- Noam D. Elkies, List of integers x,y with x<10^18, 0 < |x^3-y^2| < x^(1/2).
- J. Gebel, A. Petho and H. G. Zimmer, On Mordell's equation, Compositio Math. 110 (1998), 335-367.
-
For[x=1, True, x++, If[Abs[x^3-Round[Sqrt[x^3]]^2] < Sqrt[x] && !IntegerQ[Sqrt[x]], Print[x]]]
A200218
The differences x^3 - y^2 of Danilov's subsequence of good Hall's examples A078933.
Original entry on oeis.org
-297, 548147655, -1019827620252441, 1897387247823873407415, -3530085179800800999132960777, 6567716416847133270037051381858983, -12219223258107727669457593220846745613305, 22733840433256343397153666138928891468676446359
Offset: 1
-
aa = {}; uu = 682 + 61 * Sqrt[125]; Do[vv = Expand[uu^(2 * n - 1)]; tt = ((-1)^n vv[[1]] + 57)/125; xx = (5^5 * tt^2 - 3000 * tt + 719); yy = Round[N[Sqrt[xx^3], 1000]]; dd = xx^3 - yy^2; AppendTo[aa, dd], {n, 1, 10}]; aa
(* Recurrence generator of R. J. Mathar *)
dd = {-297, 548147655, -1019827620252441}; a0 = dd[[1]]; a1 = dd[[2]]; a2 = dd[[3]]; Do[a = a0 + 1860497 * a1 - 1860497 * a2; a0 = a1; a1 = a2; a2 = a; AppendTo[aa, a], {n, 1, 10}]; aa
(* Third one after Lucas numbers formula *)
Table[27/125 (-5 + (-1)^n ((-1)^(n + 1) 6 + LucasL[15 (-1 + 2 n)])), {n, 10}] (* Artur Jasinski, Nov 18 2011*)
A200217
Danilov's sequence of y values satisfying 0 < |x^3 - y^2| < sqrt(x) with integer (x,y).
Original entry on oeis.org
28748141, 182720147509505842286585077, 1176722513851727970194784616032383058302343205, 7578123615032687003769196301877008424487234722410713810234126013
Offset: 1
-
with(numtheory):
Di := 125 ;
cf := numtheory[cfrac](sqrt(Di),'periodic','quotients') ;
for i from 1 to 220 do
x := nthnumer(cf,i) ;
y := nthdenom(cf,i) ;
rr := x^2-Di*y^2 ;
if rr = -1 then
t := x-5 ;
if (t mod 5) = 2 then
t := -t-10 ;
y := -y ;
end if;
pk := t ;
qk := y ;
yM := qk*(pk^2+pk-1) ;
yM := abs(yM) ;
printf("%d,",yM) ;
end if;
end do: # R. J. Mathar, Nov 15 2011
-
aa = {}; uu = 682 + 61*Sqrt[125]; Do[vv = Expand[uu^(2*n - 1)]; tt = ((-1)^n vv[[1]] + 57)/125; xx = (5^5*tt^2 - 3000*tt + 719); yy = Round[N[Sqrt[xx^3], 1000]]; dd = xx^3 - yy^2; AppendTo[aa, yy], {n, 1, 5}]; aa
(* recurrence formula of R. J. Mathar *)
dd = {28748141, 182720147509505842286585077, 1176722513851727970194784616032383058302343205, 7578123615032687003769196301877008424487234722410713810234126013, 48803313311937248954865638168364942372153001387358275397822506563724900540813098269, 314294607902465331119210305427552029679173295887697814635011836442516313036620521777783545650437642949}; a0 = dd[[1]]; a1 = dd[[2]]; a2 = dd[[3]]; a3 = dd[[4]]; a4 = dd[[5]]; a5 = dd[[6]]; Do[a = 6440022564929296994 a5 + 22291834190970757443015664937985 a4 + -41473935220466903245533179036528718020 a3 + 22291834190970757443015664937985 a2 + 6440022564929296994*a1 - a0; a0 = a1; a1 = a2; a2 = a3 = a4; a5 = a6; a6 = a; AppendTo[aa, a], {n, 1, 10}]; aa (* Artur Jasinski, Nov 15 2011 *)
CoefficientList[Series[-(61 (-1 + x) (471281 - 39648020168249880312376 x - 417898575330317669831476343067314 x^2 - 39648020168249880312376 x^3 + 471281 x^4))/((1 - 6440026026380244498 x + x^2) (1 - 1860498 x + x^2) (1 + 3461452808002 x + x^2)), {x, 0, 10}], x] (* Artur Jasinski, Nov 16 2011 *)
(* Lucas - Fibonacci formula *)
aa = {}; Do[If[n == 1, AppendTo[aa, 15 + 9 LucasL[15 (-1 + 2 n)] + 15 LucasL[30 (-1 + 2 n)] - 6 Fibonacci[15 (-1 + 2 n)] + Fibonacci[30 (-1 + 2 n)]], AppendTo[aa, 15/8 Fibonacci[15 (-1 + 2 n)] - 9/20 Fibonacci[30 (-1 + 2 n)] + 1/40 Fibonacci[45 (-1 + 2 n)]]], {n, 1, 10}]; aa (* Artur Jasinski, Nov 18 2011 *)
A200656
Successive values x such that the Mordell elliptic curve x^3 - y^2 = d has extremal points with quadratic extension over the rationals.
Original entry on oeis.org
1942, 2878, 3862, 6100, 8380, 11512, 15448, 18694, 31228, 93844, 111382, 117118, 129910, 143950, 186145, 210025, 375376, 445528, 468472, 575800, 844596, 1002438, 1054062, 1193740, 1248412, 1326025, 1388545, 1501504, 1697908, 1782112, 1813660, 1873888, 1946737
Offset: 1
A134105
Complete list of solutions to y^2 = x^3 + 297; sequence gives x values.
Original entry on oeis.org
-6, -2, 3, 4, 12, 34, 48, 1362, 93844
Offset: 1
-
Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, 297])) ]); /* adapted from A029728 */
-
sol[x_] := Solve[y > 0 && x^3 - y^2 == -297, y, Integers];
Reap[For[x = 1, x < 10^5, x++, sx = sol[x]; If[sx != {}, xy = {x, y} /. sx[[1]]; Print[xy]; Sow[xy]]; sx = sol[-x]; If[sx != {}, xy = {-x, y} /. sx[[1]]; Print[xy]; Sow[xy]]]][[2, 1]][[All, 1]] // Sort (* Jean-François Alcover, Feb 07 2020 *)
-
[i[0] for i in EllipticCurve([0, 297]).integral_points()] # Seiichi Manyama, Aug 26 2019
A201278
a(n) specifies the quadratic extension sqrt(a(n)) for A201047(n).
Original entry on oeis.org
10, 2, 2, 5, 5, 130, 185, 5, 2, 2, 10, 10, 5, 5, 10, 17, 17, 5, 5, 5, 53, 53, 13, 13, 1490, 5, 2, 2, 5, 1565, 5
Offset: 1
A200936
Successive values x of solutions Mordell's elliptic curve x^3-y^2 = d contained points {x,y} with quadratic extension sqrt(2) over rationals.
Original entry on oeis.org
22, 190, 2878, 3862, 111382, 117118, 3864190, 3897622, 131738902, 131933758, 4477986238, 4479121942, 152135692822, 152142312190, 5168228240638, 5168266821142, 175568164615702, 175568389479358, 5964152516784190, 5964153827385622, 202605635754466582
Offset: 0
a(3)=2878=A200656(1) because 2878^3-154396^2=15336.
G.f. = 22 + 190*x + 2868*x^2 + 3862*x^3 + 111382*x^4 + 117118*x^5 + ... - _Michael Somos_, Aug 23 2018
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(2*(11+84*z+904*z^2-2868*z^3+492*z^5 -12*z^7 +2266*z^4 -440*z^6 +11*z^8)/((1-z)*(z^2+6*z+1)*(1-6*z+z^2)*(z^2+2*z-1)*(z^2-2*z-1)))); // G. C. Greubel, Jul 27 2018
-
aa = {22, 190, 2878, 3862, 111382, 117118, 3864190, 3897622, 131738902}; a1 = aa[[1]]; a2 = aa[[3]]; a3 = aa[[3]]; a4 = aa[[4]]; a5 = aa[[5]]; a6 = aa[[6]]; a7 = aa[[7]]; a8 = aa[[8]]; a9 = aa[[9]]; Do[an = a9 + 40*a8 - 40*a7 - 206*a6 + 206*a5 + 40*a4 - 40*a3 - a2 + a1; a1 = a2; a2 = a3; a3 = a4; a4 = a5; a5 = a6; a6 = a7; a7 = a8; a8 = a9; a9 = an; AppendTo[aa, an], {nn, 20}]; aa
CoefficientList[Series[-2*(11 + 84*z + 904*z^2 - 2868*z^3 + 492*z^5 - 12*z^7 + 2266*z^4 - 440*z^6 + 11*z^8)/((z - 1) (z^2 + 6*z + 1) (1 - 6*z + z^2) (z^2 + 2*z - 1) (z^2 - 2*z - 1)), {z, 0, 30}], z] (* G. C. Greubel, Jul 27 2018 *)
a[ n_] := With[{m = Max[-5 - n, n]}, SeriesCoefficient[ 2 (1 - 12 x - 40 x^2 + 396 x^3 - 1138 x^4 + 396 x^5 - 40 x^6 - 12 x^7 + x^8) / (x^2 (x - 1) (1 + 6 x + x^2) (1 - 6 x + x^2) (x^2 + 2 x - 1) (x^2 - 2 x - 1)), {x, 0, m}]]; (* Michael Somos, Aug 23 2018 *)
a[ n_] := With[ {m = If[ OddQ[n], -5 - n, n], r1 = 1 + Sqrt[2], r2 = 1 - Sqrt[2]}, Simplify[7 - 6 (6 r1 + r2) r1^m - 6 (r1 + 6 r2) r2^m + (169 r1 + 29 r2)/4 r1^(2 m) + (29 r1 + 169 r2)/4 r2^(2 m)]]; (* Michael Somos, Aug 25 2018 *)
-
z='z+O('z^30); Vec(2*(11+84*z+904*z^2-2868*z^3+492*z^5 -12*z^7 +2266*z^4 -440*z^6 +11*z^8)/((1-z)*(z^2+6*z+1)*(1-6*z+z^2)*(z^2+2*z-1)*(z^2-2*z-1))) \\ G. C. Greubel, Jul 27 2018
-
{a(n) = my(m = max(-5-n, n)); polcoeff( 2*(1 - 12*x - 40*x^2 + 396*x^3 - 1138*x^4 + 396*x^5 - 40*x^6 - 12*x^7 + x^8) / (x^2*(x - 1)*(1 + 6*x + x^2)*(1 - 6*x + x^2)*(x^2 + 2*x - 1)*(x^2 - 2*x - 1)) + x * O(x^m), m)}; /* Michael Somos, Aug 23 2018 */
-
{a(n) = my(m = if(n%2, -5-n, n), r1 = 1 + quadgen(8), r2 = 1 - quadgen(8)); simplify(7 - 6*(6*r1 + r2) * r1^m - 6*(r1 + 6*r2) * r2^m + (169*r1 + 29*r2)/4 * r1^(2*m) + (29*r1 + 169*r2)/4 * r2^(2*m))}; /* Michael Somos, Aug 25 2018 */
A200938
Values d for infinite sequence x^3-y^2 = d with increasing coefficient r=sqrt(x)/|d| or family of solutions Mordell curve with extension sqrt(2).
Original entry on oeis.org
648, -5400, 15336, -20088, 100872, -105624, 599400, -604152, 3505032, -3509784, 20440296, -20445048, 119146248, -119151000, 694446696, -694451448, 4047543432, -4047548184, 23590823400, -23590828152, 137497406472, -137497411224, 801393624936, -801393629688
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(216*(3-28*x+78*x^2+4*x^3-13*x^4)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2)))); // G. C. Greubel, Aug 18 2018
-
uu = {648, -5400, 15336, -20088, 100872}; a1 = aa[[1]]; a2 = aa[[2]]; a3 = aa[[3]]; a4 = aa[[4]]; a5 = aa[[5]]; Do[an = a5 + 6 a4 - 6 a3 - a2 + a1; a1 = a2; a2 = a3; a3 = a4; a4 = a5; a5 = an; AppendTo[uu, an], {nn, 1, 20}]; uu
-
my(x='x+O('x^30)); Vec(216*(3-28*x+78*x^2+4*x^3-13*x^4)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2))) \\ G. C. Greubel, Aug 18 2018
A201225
Values x for infinite sequence x^3-y^2 = d with decreasing coefficient r=sqrt(x)/d which tend to 1/(1350*sqrt(5))or infinity family of solutions Mordell curve with extension sqrt(5).
Original entry on oeis.org
6100, 2305180, 748476100, 241118603980, 77641444770100, 25000340035616380, 8050032494909496100, 2592085474592828222380, 834643472994047002110100, 268752606222334691877221980, 86537504560185639786707316100, 27864807715774753485364243735180
Offset: 1
-
LinearRecurrence[{341,-6138,6138,-341,1},{6100,2305180,748476100,241118603980,77641444770100},20] (* Harvey P. Dale, Aug 17 2016 *)
Showing 1-10 of 12 results.
Comments