cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A200581 a(n) = gcd(t(n), t(2*n)), where t = A200218.

Original entry on oeis.org

297, 4456485, 552604437, 8291281429233, 1028119449829329, 15425912516520681549, 1912814180168014341405, 28699879385153403699122169, 3558786956573202226705490361, 53396068196303711362892876498613, 6621116015128616782200943391318373
Offset: 1

Views

Author

Artur Jasinski, Nov 19 2011

Keywords

Comments

Successive records in GCD of A200218 occurred between A200218(n) and A200218(2*n). Also, A200582 shows big increases in GCD for A200218(n) and A200218(2*n-1).

Crossrefs

A200582 a(n) = gcd(t(n), t(n-1)), where t is A200218.

Original entry on oeis.org

297, 36531, 548111421, 67965852735, 1019760202547361, 126450333081725499, 1897261817318411934357, 235260591797816161585767, 3529851816596251006844782425, 437701860518526922664914606467, 6567282245071794543915385600213293, 814343436090763041972430479341054799
Offset: 1

Views

Author

Artur Jasinski, Nov 19 2011

Keywords

Comments

This sequence allows us to find periods in A200218 and understand better A200218 and whole Danilov sequence.

Crossrefs

A200565 Integral x solutions of elliptic curve x^3-y^2 = 54814765 = A200218(2).

Original entry on oeis.org

819, 5256, 838044, 322001299796379844
Offset: 1

Views

Author

Artur Jasinski, Nov 19 2011

Keywords

Comments

a(4)=A200216(2).

Crossrefs

A200216 Danilov's sequence of x satisfying 0 < |x^3-y^2| < sqrt(x) with integer (x,y).

Original entry on oeis.org

93844, 322001299796379844, 1114592308630995805123571151844, 3858108676488182444301031186675778188809844, 13354661111806898918013326915229994453818137920195953844
Offset: 1

Views

Author

Artur Jasinski, Nov 14 2011

Keywords

Comments

For y values see A200217.
For x^3-y^2 values see A200218.
The values (a(n)+1)/5 are perfect squares: for sqrt((a(n)+1)/5) see A200335.
This sequence is an infinite subset of A078933. - Artur Jasinski, Nov 27 2011

Examples

			|93844^3 - (round(sqrt(93844^3)))^2| < sqrt(93844).
		

References

Crossrefs

Programs

  • Mathematica
    aa = {}; uu = 682 + 61*Sqrt[125]; Do[vv = Expand[uu^(2*n - 1)]; tt = ((-1)^n vv[[1]] + 57)/125; xx = (5^5*tt^2 - 3000*tt + 719); yy = Round[N[Sqrt[xx^3], 1000]]; dd = xx^3 - yy^2; AppendTo[aa, xx], {n, 1, 6}]; aa
    (* second program follows the generator formula *)
    data = Table[(7/10 - (6/5)*(-1)^n*(1/2)*(f^(15*(2 n - 1)) - (1/f)^(15 (2 n - 1))) + (1/20)*(f^(30 (2 n - 1)) + (1/f)^(30 (2 n - 1)))) /. f -> GoldenRatio, {n, 1, 6}]; data // FunctionExpand // ExpandAll // Simplify (* Bob Hanlon (hanlonr(AT)cox.net) *)
    (* third program uses the Lucas numbers formula *)
    Table[7/10 + (-1)^(n + 1) 3/5 LucasL[15*(2 n - 1)] +
      1/20 LucasL[30*(2 n - 1)] , {n, 1, 10}] (* Artur Jasinski, Nov 18 2011 *)
  • PARI
    u = quadunit(20)^5
    for(i=1,6, v = u^(2*i-1); t = ((-1)^i * real(v) + 57) / 125; print(5^5*t^2 - 3000*t + 719) ) \\ Noam D. Elkies
    
  • Python
    from sympy import lucas
    def A200216(n): return (14+12*(lucas(k:=30*n-15) if n&1 else -lucas(k:=30*n-15))+lucas(k<<1))//20 # Chai Wah Wu, Jun 19 2024

Formula

Conjecture: a(n) = 3461450947505*a(n-1) + 6440022564931157490*a(n-2) - 6440022564931157490*a(n-3) - 3461450947505*a(n-4) + a(n-5). - R. J. Mathar, Nov 15 2011
Conjecture: g.f. 4092*(1-z)/(5*(1+1860498*z+z^2)) - 7/(10*(z-1)) + 930249*(1-z)/(10*(1-3461452808002*z+z^2)). - R. J. Mathar, Nov 15 2011
3125*A200218(n)^2 + 6750*A200218(n) + 729 = 2916*a(n). - Artur Jasinski, Nov 15 2011
125*y^2 *(54 + 50*x^3 - 25*y^2)=(9 - 6*x + 5*x^2)*(-9 + 15*x + 25*x^2)^2. - Artur Jasinski, Nov 16 2011
a(n) = 7/10 - (6/5)*(-1)^n*(1/2)*(f^(15*(2*n-1))-(1/f)^(15*(2*n-1))) + (1/20)*(f^(30*(2*n-1))+(1/f)^(30*(2*n-1))), where f is golden ratio constant = (1+sqrt(5)/2). - Artur Jasinski, Nov 17 2011
a(n) = 7/10 + (3/5)*L(15*(2*n - 1))*(-1)^(n+1) + (1/20)*L(30*(2*n - 1)) where L(k) is the k-th Lucas number: A000204(n) or A000032(n+1). - Artur Jasinski, Nov 18 2011

A200217 Danilov's sequence of y values satisfying 0 < |x^3 - y^2| < sqrt(x) with integer (x,y).

Original entry on oeis.org

28748141, 182720147509505842286585077, 1176722513851727970194784616032383058302343205, 7578123615032687003769196301877008424487234722410713810234126013
Offset: 1

Views

Author

Artur Jasinski, Nov 14 2011

Keywords

Comments

See A078933 for further references.
All terms in this sequence are of the form 61*(2728*k + 2065).
Relations between y and x are given by the curve:
125*y^2 *(54 + 50*x^3 - 25*y^2) = (9 - 6*x + 5*x^2)*(-9 + 15*x + 25*x^2)^2.
Relations between y and d are given by the hyperelliptic curve:
(157464*y)^2 = (729 + 594*d + 125*d^2) (-729 + 13500*d + 15625*d^2)^2 is singular (has two cusps) and for these reasons Danilov's sequence has infinitely many integer solutions. - Artur Jasinski, Nov 16 2011

Crossrefs

Cf. A078933, A200216 (x-values), A200218 (x^3-y^2), A179107 - A179109, A179387, A179388, A199496.

Programs

  • Maple
    with(numtheory):
    Di := 125 ;
    cf := numtheory[cfrac](sqrt(Di),'periodic','quotients') ;
    for i from 1 to 220 do
       x := nthnumer(cf,i) ;
       y := nthdenom(cf,i) ;
       rr := x^2-Di*y^2 ;
       if rr = -1 then
          t := x-5 ;
          if (t mod 5) = 2 then
                  t := -t-10 ;
                  y := -y ;
          end if;
          pk := t ;
          qk := y ;
          yM := qk*(pk^2+pk-1) ;
          yM := abs(yM) ;
          printf("%d,",yM) ;
       end if;
    end do: # R. J. Mathar, Nov 15 2011
  • Mathematica
    aa = {}; uu = 682 + 61*Sqrt[125]; Do[vv = Expand[uu^(2*n - 1)]; tt = ((-1)^n vv[[1]] + 57)/125; xx = (5^5*tt^2 - 3000*tt + 719); yy = Round[N[Sqrt[xx^3], 1000]]; dd = xx^3 - yy^2; AppendTo[aa, yy], {n, 1, 5}]; aa
    (* recurrence formula of R. J. Mathar *)
    dd = {28748141, 182720147509505842286585077, 1176722513851727970194784616032383058302343205, 7578123615032687003769196301877008424487234722410713810234126013, 48803313311937248954865638168364942372153001387358275397822506563724900540813098269, 314294607902465331119210305427552029679173295887697814635011836442516313036620521777783545650437642949}; a0 = dd[[1]]; a1 = dd[[2]]; a2 = dd[[3]]; a3 = dd[[4]]; a4 = dd[[5]]; a5 = dd[[6]]; Do[a = 6440022564929296994 a5 + 22291834190970757443015664937985 a4 + -41473935220466903245533179036528718020 a3 + 22291834190970757443015664937985 a2 + 6440022564929296994*a1 - a0; a0 = a1; a1 = a2; a2 = a3 = a4; a5 = a6; a6 = a; AppendTo[aa, a], {n, 1, 10}]; aa (* Artur Jasinski, Nov 15 2011 *)
    CoefficientList[Series[-(61 (-1 + x) (471281 - 39648020168249880312376 x - 417898575330317669831476343067314 x^2 - 39648020168249880312376 x^3 + 471281 x^4))/((1 - 6440026026380244498 x + x^2) (1 - 1860498 x + x^2) (1 + 3461452808002 x + x^2)), {x, 0, 10}], x] (* Artur Jasinski, Nov 16 2011 *)
    (* Lucas - Fibonacci formula *)
    aa = {}; Do[If[n == 1, AppendTo[aa, 15 + 9 LucasL[15 (-1 + 2 n)] + 15 LucasL[30 (-1 + 2 n)] - 6 Fibonacci[15 (-1 + 2 n)] + Fibonacci[30 (-1 + 2 n)]], AppendTo[aa, 15/8 Fibonacci[15 (-1 + 2 n)] - 9/20 Fibonacci[30 (-1 + 2 n)] + 1/40 Fibonacci[45 (-1 + 2 n)]]], {n, 1, 10}]; aa (* Artur Jasinski, Nov 18 2011 *)

Formula

Conjecture: a(n) = +6440022564929296994*a(n-1) +22291834190970757443015664937985*a(n-2) -41473935220466903245533179036528718020*a(n-3) +22291834190970757443015664937985*a(n-4) +6440022564929296994*a(n-5) -a(n-6). - R. J. Mathar, Nov 15 2011
Equivalent conjecture g.f.: -61*(z-1) * (471281*z^4 -39648020168249880312376*z^3 -417898575330317669831476343067314*z^2 -39648020168249880312376*z +471281) / ( (z^2+3461452808002*z+1) *(z^2-6440026026380244498*z+1) *(z^2-1860498*z+1) ). - R. J. Mathar, Nov 15 2011
Formula by Lucas and Fibonacci numbers: a(1) = 15+9*L(15)+15*L(30)-6*F(15)+F(30), for n>1 a(n) = (15/8)*F(15(2n-1)) - (9/20)*F(30(2n-1)) + (1/40) * F(45(2n-1)) where F(k) is k-th Fibonacci number A000045(n) and L(k) is k-th Lucas number A000204(n) or A000032(n+1). - Artur Jasinski, Nov 18 2011

A134105 Complete list of solutions to y^2 = x^3 + 297; sequence gives x values.

Original entry on oeis.org

-6, -2, 3, 4, 12, 34, 48, 1362, 93844
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007

Keywords

Comments

For corresponding y values and examples see A134104.
The parameter -297 of the curve corresponds to A200218(1). a(9)=A200216(1). - Artur Jasinski, Nov 29 2011

Crossrefs

Programs

  • Magma
    Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, 297])) ]); /* adapted from A029728 */
    
  • Mathematica
    sol[x_] := Solve[y > 0 && x^3 - y^2 == -297, y, Integers];
    Reap[For[x = 1, x < 10^5, x++, sx = sol[x]; If[sx != {}, xy = {x, y} /. sx[[1]]; Print[xy]; Sow[xy]]; sx = sol[-x]; If[sx != {}, xy = {-x, y} /. sx[[1]]; Print[xy]; Sow[xy]]]][[2, 1]][[All, 1]] // Sort (* Jean-François Alcover, Feb 07 2020 *)
  • SageMath
    [i[0] for i in EllipticCurve([0, 297]).integral_points()] # Seiichi Manyama, Aug 26 2019

A200658 a(n) = A200656(n)^3 - A200657(n)^2.

Original entry on oeis.org

52488, 15336, -20088, 219375, -293625, 981504, -1285632, -474552, 1367631
Offset: 1

Views

Author

Artur Jasinski, Nov 20 2011

Keywords

Comments

For x values see A200656.
For y values see A200657.
Definition: Secondary terms occurred when existed such integer k that A200656 is divisible by k^2 and A200657 is divisible by k^3 and A200658 is divisible by k^6.
Terms free of such k are primary terms.
Secondary terms are: a(6)=a(2)*2^6, a(7)=a(3)*2^6.
A200218 is subset of this sequence.

Crossrefs

A200938 Values d for infinite sequence x^3-y^2 = d with increasing coefficient r=sqrt(x)/|d| or family of solutions Mordell curve with extension sqrt(2).

Original entry on oeis.org

648, -5400, 15336, -20088, 100872, -105624, 599400, -604152, 3505032, -3509784, 20440296, -20445048, 119146248, -119151000, 694446696, -694451448, 4047543432, -4047548184, 23590823400, -23590828152, 137497406472, -137497411224, 801393624936, -801393629688
Offset: 0

Views

Author

Artur Jasinski, Nov 25 2011

Keywords

Comments

For x values see A200936.
For y values see A200937.
This sequence is equivalent of A200218, but A200218 was for quadratic field with extension sqrt(5).
All numbers in this sequence are of the form 216*(4k+3).
When indices n are even d=a(n) are positive, when n is odd d=a(n) are negative.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(216*(3-28*x+78*x^2+4*x^3-13*x^4)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2)))); // G. C. Greubel, Aug 18 2018
  • Mathematica
    uu = {648, -5400, 15336, -20088, 100872}; a1 = aa[[1]]; a2 = aa[[2]]; a3 = aa[[3]]; a4 = aa[[4]]; a5 = aa[[5]]; Do[an = a5 + 6 a4 - 6 a3 - a2 + a1; a1 = a2; a2 = a3; a3 = a4; a4 = a5; a5 = an; AppendTo[uu, an], {nn, 1, 20}]; uu
  • PARI
    my(x='x+O('x^30)); Vec(216*(3-28*x+78*x^2+4*x^3-13*x^4)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2))) \\ G. C. Greubel, Aug 18 2018
    

Formula

a(n) = A200936(n)^3 - A200937(n)^2.
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5).
G.f.: 216*(3 - 28*z + 78*z^2 + 4*z^3 - 13*z^4)/((1 - z)*(1 + 2*z - z^2) *(1 - 2*z - z^2)).
E.g.f.: 216*(cosh(x)*(14*cosh(sqrt(2)*x) - 4*sqrt(2)*sinh(sqrt(2)*x) - 11) - sinh(x)*(6*cosh(sqrt(2)*x) - 10*sqrt(2)*sinh(sqrt(2)*x) + 11)). - Stefano Spezia, Oct 03 2022

A200335 a(n) = sqrt((A200216(n)+1)/5).

Original entry on oeis.org

137, 253772063, 472142416783537, 878420022140682133063, 1634298694352222684783778137, 3040609452244043180572708973082863, 5657047804679503550674811676317937783937, 10524926126507566387571141730985597902165021463
Offset: 1

Views

Author

Artur Jasinski, Nov 16 2011

Keywords

Comments

All numbers (A200216(n)+1)/5 are perfect squares

Crossrefs

Programs

  • Magma
    I:=[137, 253772063, 472142416783537]; [n le 3 select I[n] else 1860497*Self(n-1)+1860497*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Nov 18 2011
    
  • Mathematica
    aa = {}; uu = 682 + 61*Sqrt[125]; Do[vv = Expand[uu^(2*n - 1)]; tt = ((-1)^n vv[[1]] + 57)/125; xx = (5^5*tt^2 - 3000*tt + 719); yy = Round[N[Sqrt[xx^3], 1000]]; dd = xx^3 - yy^2; AppendTo[aa, Sqrt[(xx + 1)/5]], {n, 1, 20}]; aa
  • PARI
    x='x+O('x^30); Vec((137 -1116026*x +137*x^2)/(1 - 1860497*x - 1860497*x^2 + x^3)) \\ G. C. Greubel, Jul 10 2018

Formula

G.f.: (137 - 1116026*x + 137*x^2)/(1 - 1860497*x - 1860497*x^2 + x^3).
a(n) = 1860497*a(n-1) + 1860497*a(n-2) - a(n-3). [corrected by Vincenzo Librandi, Nov 18 2011]

A201227 a(n) = (A201225(n))^3 - (A201226(n))^2.

Original entry on oeis.org

219375, 4566375, 82569375, 1482276375, 26598999375, 477300306375, 8564807109375, 153689228256375, 2757841302099375, 49487454210126375, 888016334480769375, 15934806566444316375, 285938501861517519375, 5130958226940871626375, 92071309583074172349375
Offset: 1

Views

Author

Artur Jasinski, Nov 28 2011

Keywords

Comments

Values d of solutions (x,y,d) of x^3-y^2 = d with decreasing coefficient r=sqrt(x)/d which r tend to 1/(1350*sqrt(5)) when d tends to infinity.
Also infinity family of solutions Mordell curve with extension sqrt(5) (another than A200218).
Conjecture: No more infinite families of solutions Mordell curves with extension sqrt(5) than A201227 and A200218.
Ratio a(n+1)/a(n) tends to 9+4*sqrt(5) when n tends to infinity.
Because all values in this sequence are positive, it means that A201225, A201226 and A201227 are even indexes subset of another sequence.

Programs

  • Mathematica
    LinearRecurrence[{19,-19,1},{219375,4566375,82569375},30] (* Harvey P. Dale, Sep 25 2012 *)

Formula

a(n) = (A201225(n))^3 - (A201226(n))^2.
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3).
G.f.: x*(3375*(-65-118*x+7*x^2))/((-1+x)*(1-18*x+x^2)).
a(n) = 3375*(-11-(-2+sqrt(5))*(9+4*sqrt(5))^(-n)+(2+sqrt(5))*(9+4*sqrt(5))^n). - Colin Barker, Mar 03 2016
Showing 1-10 of 12 results. Next