A200581
a(n) = gcd(t(n), t(2*n)), where t = A200218.
Original entry on oeis.org
297, 4456485, 552604437, 8291281429233, 1028119449829329, 15425912516520681549, 1912814180168014341405, 28699879385153403699122169, 3558786956573202226705490361, 53396068196303711362892876498613, 6621116015128616782200943391318373
Offset: 1
A200582
a(n) = gcd(t(n), t(n-1)), where t is A200218.
Original entry on oeis.org
297, 36531, 548111421, 67965852735, 1019760202547361, 126450333081725499, 1897261817318411934357, 235260591797816161585767, 3529851816596251006844782425, 437701860518526922664914606467, 6567282245071794543915385600213293, 814343436090763041972430479341054799
Offset: 1
A200565
Integral x solutions of elliptic curve x^3-y^2 = 54814765 = A200218(2).
Original entry on oeis.org
819, 5256, 838044, 322001299796379844
Offset: 1
A200216
Danilov's sequence of x satisfying 0 < |x^3-y^2| < sqrt(x) with integer (x,y).
Original entry on oeis.org
93844, 322001299796379844, 1114592308630995805123571151844, 3858108676488182444301031186675778188809844, 13354661111806898918013326915229994453818137920195953844
Offset: 1
|93844^3 - (round(sqrt(93844^3)))^2| < sqrt(93844).
- L. V. Danilov, Letter to the Editor, Mat. Zametki, 1984, Volume 36, Issue 3, Pages 457-458.
- L. V. Danilov, Letter to the editor, Math. Notes 36 (3) (1984) 726.
- R. D'Mello, Marshall Hall's Conjecture and Gaps Between Integer Points on Mordell Elliptic Curves, arXiv preprint arXiv:1410.0078 [math.NT], 2014.
-
aa = {}; uu = 682 + 61*Sqrt[125]; Do[vv = Expand[uu^(2*n - 1)]; tt = ((-1)^n vv[[1]] + 57)/125; xx = (5^5*tt^2 - 3000*tt + 719); yy = Round[N[Sqrt[xx^3], 1000]]; dd = xx^3 - yy^2; AppendTo[aa, xx], {n, 1, 6}]; aa
(* second program follows the generator formula *)
data = Table[(7/10 - (6/5)*(-1)^n*(1/2)*(f^(15*(2 n - 1)) - (1/f)^(15 (2 n - 1))) + (1/20)*(f^(30 (2 n - 1)) + (1/f)^(30 (2 n - 1)))) /. f -> GoldenRatio, {n, 1, 6}]; data // FunctionExpand // ExpandAll // Simplify (* Bob Hanlon (hanlonr(AT)cox.net) *)
(* third program uses the Lucas numbers formula *)
Table[7/10 + (-1)^(n + 1) 3/5 LucasL[15*(2 n - 1)] +
1/20 LucasL[30*(2 n - 1)] , {n, 1, 10}] (* Artur Jasinski, Nov 18 2011 *)
-
u = quadunit(20)^5
for(i=1,6, v = u^(2*i-1); t = ((-1)^i * real(v) + 57) / 125; print(5^5*t^2 - 3000*t + 719) ) \\ Noam D. Elkies
-
from sympy import lucas
def A200216(n): return (14+12*(lucas(k:=30*n-15) if n&1 else -lucas(k:=30*n-15))+lucas(k<<1))//20 # Chai Wah Wu, Jun 19 2024
A200217
Danilov's sequence of y values satisfying 0 < |x^3 - y^2| < sqrt(x) with integer (x,y).
Original entry on oeis.org
28748141, 182720147509505842286585077, 1176722513851727970194784616032383058302343205, 7578123615032687003769196301877008424487234722410713810234126013
Offset: 1
-
with(numtheory):
Di := 125 ;
cf := numtheory[cfrac](sqrt(Di),'periodic','quotients') ;
for i from 1 to 220 do
x := nthnumer(cf,i) ;
y := nthdenom(cf,i) ;
rr := x^2-Di*y^2 ;
if rr = -1 then
t := x-5 ;
if (t mod 5) = 2 then
t := -t-10 ;
y := -y ;
end if;
pk := t ;
qk := y ;
yM := qk*(pk^2+pk-1) ;
yM := abs(yM) ;
printf("%d,",yM) ;
end if;
end do: # R. J. Mathar, Nov 15 2011
-
aa = {}; uu = 682 + 61*Sqrt[125]; Do[vv = Expand[uu^(2*n - 1)]; tt = ((-1)^n vv[[1]] + 57)/125; xx = (5^5*tt^2 - 3000*tt + 719); yy = Round[N[Sqrt[xx^3], 1000]]; dd = xx^3 - yy^2; AppendTo[aa, yy], {n, 1, 5}]; aa
(* recurrence formula of R. J. Mathar *)
dd = {28748141, 182720147509505842286585077, 1176722513851727970194784616032383058302343205, 7578123615032687003769196301877008424487234722410713810234126013, 48803313311937248954865638168364942372153001387358275397822506563724900540813098269, 314294607902465331119210305427552029679173295887697814635011836442516313036620521777783545650437642949}; a0 = dd[[1]]; a1 = dd[[2]]; a2 = dd[[3]]; a3 = dd[[4]]; a4 = dd[[5]]; a5 = dd[[6]]; Do[a = 6440022564929296994 a5 + 22291834190970757443015664937985 a4 + -41473935220466903245533179036528718020 a3 + 22291834190970757443015664937985 a2 + 6440022564929296994*a1 - a0; a0 = a1; a1 = a2; a2 = a3 = a4; a5 = a6; a6 = a; AppendTo[aa, a], {n, 1, 10}]; aa (* Artur Jasinski, Nov 15 2011 *)
CoefficientList[Series[-(61 (-1 + x) (471281 - 39648020168249880312376 x - 417898575330317669831476343067314 x^2 - 39648020168249880312376 x^3 + 471281 x^4))/((1 - 6440026026380244498 x + x^2) (1 - 1860498 x + x^2) (1 + 3461452808002 x + x^2)), {x, 0, 10}], x] (* Artur Jasinski, Nov 16 2011 *)
(* Lucas - Fibonacci formula *)
aa = {}; Do[If[n == 1, AppendTo[aa, 15 + 9 LucasL[15 (-1 + 2 n)] + 15 LucasL[30 (-1 + 2 n)] - 6 Fibonacci[15 (-1 + 2 n)] + Fibonacci[30 (-1 + 2 n)]], AppendTo[aa, 15/8 Fibonacci[15 (-1 + 2 n)] - 9/20 Fibonacci[30 (-1 + 2 n)] + 1/40 Fibonacci[45 (-1 + 2 n)]]], {n, 1, 10}]; aa (* Artur Jasinski, Nov 18 2011 *)
A134105
Complete list of solutions to y^2 = x^3 + 297; sequence gives x values.
Original entry on oeis.org
-6, -2, 3, 4, 12, 34, 48, 1362, 93844
Offset: 1
-
Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, 297])) ]); /* adapted from A029728 */
-
sol[x_] := Solve[y > 0 && x^3 - y^2 == -297, y, Integers];
Reap[For[x = 1, x < 10^5, x++, sx = sol[x]; If[sx != {}, xy = {x, y} /. sx[[1]]; Print[xy]; Sow[xy]]; sx = sol[-x]; If[sx != {}, xy = {-x, y} /. sx[[1]]; Print[xy]; Sow[xy]]]][[2, 1]][[All, 1]] // Sort (* Jean-François Alcover, Feb 07 2020 *)
-
[i[0] for i in EllipticCurve([0, 297]).integral_points()] # Seiichi Manyama, Aug 26 2019
Original entry on oeis.org
52488, 15336, -20088, 219375, -293625, 981504, -1285632, -474552, 1367631
Offset: 1
A200938
Values d for infinite sequence x^3-y^2 = d with increasing coefficient r=sqrt(x)/|d| or family of solutions Mordell curve with extension sqrt(2).
Original entry on oeis.org
648, -5400, 15336, -20088, 100872, -105624, 599400, -604152, 3505032, -3509784, 20440296, -20445048, 119146248, -119151000, 694446696, -694451448, 4047543432, -4047548184, 23590823400, -23590828152, 137497406472, -137497411224, 801393624936, -801393629688
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(216*(3-28*x+78*x^2+4*x^3-13*x^4)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2)))); // G. C. Greubel, Aug 18 2018
-
uu = {648, -5400, 15336, -20088, 100872}; a1 = aa[[1]]; a2 = aa[[2]]; a3 = aa[[3]]; a4 = aa[[4]]; a5 = aa[[5]]; Do[an = a5 + 6 a4 - 6 a3 - a2 + a1; a1 = a2; a2 = a3; a3 = a4; a4 = a5; a5 = an; AppendTo[uu, an], {nn, 1, 20}]; uu
-
my(x='x+O('x^30)); Vec(216*(3-28*x+78*x^2+4*x^3-13*x^4)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2))) \\ G. C. Greubel, Aug 18 2018
Original entry on oeis.org
137, 253772063, 472142416783537, 878420022140682133063, 1634298694352222684783778137, 3040609452244043180572708973082863, 5657047804679503550674811676317937783937, 10524926126507566387571141730985597902165021463
Offset: 1
-
I:=[137, 253772063, 472142416783537]; [n le 3 select I[n] else 1860497*Self(n-1)+1860497*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Nov 18 2011
-
aa = {}; uu = 682 + 61*Sqrt[125]; Do[vv = Expand[uu^(2*n - 1)]; tt = ((-1)^n vv[[1]] + 57)/125; xx = (5^5*tt^2 - 3000*tt + 719); yy = Round[N[Sqrt[xx^3], 1000]]; dd = xx^3 - yy^2; AppendTo[aa, Sqrt[(xx + 1)/5]], {n, 1, 20}]; aa
-
x='x+O('x^30); Vec((137 -1116026*x +137*x^2)/(1 - 1860497*x - 1860497*x^2 + x^3)) \\ G. C. Greubel, Jul 10 2018
Original entry on oeis.org
219375, 4566375, 82569375, 1482276375, 26598999375, 477300306375, 8564807109375, 153689228256375, 2757841302099375, 49487454210126375, 888016334480769375, 15934806566444316375, 285938501861517519375, 5130958226940871626375, 92071309583074172349375
Offset: 1
-
LinearRecurrence[{19,-19,1},{219375,4566375,82569375},30] (* Harvey P. Dale, Sep 25 2012 *)
Showing 1-10 of 12 results.
Comments