cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078986 Chebyshev T(n,19) polynomial.

Original entry on oeis.org

1, 19, 721, 27379, 1039681, 39480499, 1499219281, 56930852179, 2161873163521, 82094249361619, 3117419602578001, 118379850648602419, 4495316905044313921, 170703662541035326579, 6482243859654298096081, 246154563004322292324499, 9347391150304592810234881, 354954709148570204496600979, 13478931556495363178060602321
Offset: 0

Views

Author

Wolfdieter Lang, Jan 10 2003

Keywords

Comments

a(n+1)^2 - 10*(6*A078987(n))^2 = 1, n >= 0 (Pell equation +1, see A033313 and A033317).
Also gives solutions to the equation x^2 - 1 = floor(x*r*floor(x/r)) where r=sqrt(10). - Benoit Cloitre, Feb 14 2004
Numbers n such that 10*(n^2 - 1) is a square. - Vincenzo Librandi, Aug 08 2010

Crossrefs

Row 3 of array A188645.

Programs

  • Mathematica
    LinearRecurrence[{38, -1},{1, 19},15] (* Ray Chandler, Aug 11 2015 *)
  • PARI
    a(n) = polchebyshev(n, 1, 19); \\ Michel Marcus, Jan 14 2018
  • Sage
    [lucas_number2(n,38,1)/2 for n in range(0, 16)] # Zerinvary Lajos, Nov 07 2009
    

Formula

a(n) = 38*a(n-1) - a(n-2), a(-1) := 19, a(0)=1.
G.f.: (1-19*x)/(1-38*x+x^2).
a(n) = T(n, 19) = (S(n, 38)-S(n-2, 38))/2 = S(n, 38)-19*S(n-1, 38) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(n, 38) = A078987(n).
a(n) = (ap^n + am^n)/2 with ap := 19+6*sqrt(10) and am := 19-6*sqrt(10).
a(n) = Sum_{k=0..floor(n/2)} ((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*19)^(n-2*k), n >= 1.
a(n) = cosh(2*arcsinh(3)*n). - Herbert Kociemba, Apr 24 2008

Extensions

More terms from Indranil Ghosh, Feb 04 2017