cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A078987 Chebyshev U(n,x) polynomial evaluated at x=19.

Original entry on oeis.org

1, 38, 1443, 54796, 2080805, 79015794, 3000519367, 113940720152, 4326746846409, 164302439443390, 6239165952002411, 236924003736648228, 8996872976040630253, 341644249085807301386, 12973484592284636822415, 492650770257730391950384, 18707755785201470257292177
Offset: 0

Views

Author

Wolfdieter Lang, Jan 10 2003

Keywords

Comments

A078986(n+1)^2 - 10*(6*a(n))^2 = +1, n>=0 (Pell equation +1, see A033313 and A033317).
a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,...,37}. - Milan Janjic, Jan 26 2015

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), this sequence (m=19), A097316 (m=33).

Programs

  • GAP
    m:=19;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
  • Magma
    m:=19; I:=[1, 2*m]; [n le 2 select I[n] else 2*m*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 22 2019
    
  • Maple
    seq( simplify(ChebyshevU(n, 19)), n=0..20); # G. C. Greubel, Dec 22 2019
  • Mathematica
    lst={};Do[AppendTo[lst, GegenbauerC[n, 1, 19]], {n, 0, 8^2}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    ChebyshevU[Range[21] -1, 19] (* G. C. Greubel, Dec 22 2019 *)
  • PARI
    a(n)=subst(polchebyshev(n,2),x,19) \\ Charles R Greathouse IV, Feb 10 2012
    
  • PARI
    Vec(1/(1-38*x+x^2) + O(x^50)) \\ Colin Barker, Jun 15 2015
    
  • Sage
    [lucas_number1(n,38,1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
    
  • Sage
    [chebyshev_U(n,19) for n in (0..20)] # G. C. Greubel, Dec 22 2019
    

Formula

a(n) = 38*a(n-1) - a(n-2), n>=1, a(-1)=0, a(0)=1.
a(n) = S(n, 38) with S(n, x) = U(n, x/2), Chebyshev's polynomials of the second kind. See A049310.
G.f.: 1/(1-38*x+x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*38^(n-2*k).
a(n) = ((19+6*sqrt(10))^(n+1) - (19-6*sqrt(10))^(n+1))/(12*sqrt(10)).
a(n) = Sum_{k=0..n} A101950(n,k)*37^k. - Philippe Deléham, Feb 10 2012
Product_{n>=0} (1 + 1/a(n)) = 1/3*(3 + sqrt(10)). - Peter Bala, Dec 23 2012
Product_{n>=1} (1 - 1/a(n)) = 3/19*(3 + sqrt(10)). - Peter Bala, Dec 23 2012
From Andrea Pinos, Jan 02 2023: (Start)
a(n) = (A097314(n+1) - A097315(n+1))/2.
a(n) = (A097314(n) + A097315(n))/2. (End)

A005667 Numerators of continued fraction convergents to sqrt(10).

Original entry on oeis.org

1, 3, 19, 117, 721, 4443, 27379, 168717, 1039681, 6406803, 39480499, 243289797, 1499219281, 9238605483, 56930852179, 350823718557, 2161873163521, 13322062699683, 82094249361619, 505887558869397, 3117419602578001, 19210405174337403, 118379850648602419
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A005668(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 10*b^2 = -1, a(2*n) with b(2*n) := A005668(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 10*b^2 = +1 (cf. Emerson reference).
Bisection: a(2*n) = T(n,19) = A078986(n), n >= 0 and a(2*n+1) = 3*S(2*n, 2*sqrt(10)), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
The initial 1 corresponds to a denominator 0 in A005668. But according to standard conventions, a continued fraction starts with b(0) = integer part of the number, and the sequence of convergents p(n)/q(n) start with (p(0),q(0)) = (b(0),1). A fraction 1/0 has no mathematical meaning, the only justification is that initial terms p(-1) = 1, q(-1) = 0 are consistent with the recurrent relations p(n) = b(n)*p(n-1) + b(n-2) and the same for q(n). - M. F. Hasler, Nov 02 2019

Examples

			G.f. = 1 + 3*x + 19*x^2 + 117*x^3 + 721*x^4 + 4443*x^5 + 27379*x^6 + ... - _Michael Somos_, Jul 14 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010467, A040006, A084134, A005668 (denominators).

Programs

  • Magma
    I:=[1, 3]; [n le 2 select I[n] else 6*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 09 2013
    
  • Maple
    A005667:=(-1+3*z)/(-1+6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Join[{1},Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[10],n]]],{n,1,30}]] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    CoefficientList[Series[(1-3x)/(1-6x-x^2), {x,0,30}], x] (* Vincenzo Librandi, Jun 09 2013 *)
    Join[{1},Numerator[Convergents[Sqrt[10],30]]] (* or *) LinearRecurrence[ {6,1},{1,3},30] (* Harvey P. Dale, Aug 22 2016 *)
    a[ n_] := (-I)^n ChebyshevT[ n, 3 I]; (* Michael Somos, Jul 14 2018 *)
    LucasL[Range[0,30], 6]/2 (* G. C. Greubel, Jun 06 2019 *)
  • PARI
    a(n)=([0,1;1,6]^n*[1;3])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    ((1-3*x)/(1-6*x-x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 06 2019

Formula

a(n) = 6*a(n-1) + a(n-2).
G.f.: (1-3*x)/(1-6*x-x^2).
a(n) = ((-i)^n)*T(n, 3*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1.
From Paul Barry, Nov 15 2003: (Start)
Binomial transform of A084132.
E.g.f.: exp(3*x)*cosh(sqrt(10)*x).
a(n) = ((3+sqrt(10))^n + (3-sqrt(10))^n)/2.
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k) * 10^k * 3^(n-2*k). (End)
a(n) = (-1)^n * a(-n) for all n in Z. - Michael Somos, Jul 14 2018 [This refers to the sequence extended to negative indices according to the recurrence relation, but not to the sequence as it is currently defined. - M. F. Hasler, Nov 02 2019]
a(n) = Lucas(n,6)/2, Lucas polynomial, L(n,x), evaluated at x = 6. - G. C. Greubel, Jun 06 2019

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A188645 Array of ((k^n)+(k^(-n)))/2 where k=(sqrt(x^2+1)+x)^2 for integers x>=1.

Original entry on oeis.org

1, 3, 1, 17, 9, 1, 99, 161, 19, 1, 577, 2889, 721, 33, 1, 3363, 51841, 27379, 2177, 51, 1, 19601, 930249, 1039681, 143649, 5201, 73, 1, 114243, 16692641, 39480499, 9478657, 530451, 10657, 99, 1, 665857, 299537289, 1499219281, 625447713, 54100801, 1555849, 19601, 129, 1
Offset: 0

Views

Author

Charles L. Hohn, Apr 06 2011

Keywords

Comments

Conjecture: Given function f(x, y)=(sqrt(x^2+y)+x)^2; and constant k=f(x, y); then for all integers x>=1 and y=[+-]1, k may be irrational, but ((k^n)+(k^(-n)))/2 always produces integer sequences; y=1 results shown here; y=-1 results are A188644.
Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{k}(x), evaluated at x=2*n^2+1. - Seiichi Manyama, Jan 01 2019

Examples

			Square array begins:
     | 0    1       2          3             4
-----+---------------------------------------------
   1 | 1,   3,     17,        99,          577, ...
   2 | 1,   9,    161,      2889,        51841, ...
   3 | 1,  19,    721,     27379,      1039681, ...
   4 | 1,  33,   2177,    143649,      9478657, ...
   5 | 1,  51,   5201,    530451,     54100801, ...
   6 | 1,  73,  10657,   1555849,    227143297, ...
   7 | 1,  99,  19601,   3880899,    768398401, ...
   8 | 1, 129,  33281,   8586369,   2215249921, ...
   9 | 1, 163,  53137,  17322499,   5647081537, ...
  10 | 1, 201,  80801,  32481801,  13057603201, ...
  11 | 1, 243, 118097,  57394899,  27893802817, ...
  12 | 1, 289, 167041,  96549409,  55805391361, ...
  13 | 1, 339, 229841, 155831859, 105653770561, ...
  14 | 1, 393, 308897, 242792649, 190834713217, ...
  15 | 1, 451, 406801, 366934051, 330974107201, ...
  ...
		

Crossrefs

Row 1 is A001541, row 2 is A023039, row 3 is A078986, row 4 is A099370, row 5 is A099397, row 6 is A174747, row 8 is A176368, (row 1)*2 is A003499, (row 2)*2 is A087215.
Column 1 is A058331, (column 1)*2 is A005899.
A188644 (f(x, y) as above with y=-1).
Diagonal gives A173128.
Cf. A188647.

Programs

  • Mathematica
    max = 9; y = 1; t = Table[k = ((x^2 + y)^(1/2) + x)^2; ((k^n) + (k^(-n)))/2 // FullSimplify, {n, 0, max - 1}, {x, 1, max}]; Table[ t[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 17 2013 *)

Formula

A(n,k) = (A188647(n,k-1) + A188647(n,k))/2.
A(n,k) = Sum_{j=0..k} binomial(2*k,2*j)*(n^2+1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019

Extensions

Edited and extended by Seiichi Manyama, Jan 01 2019

A322836 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{n}(x), evaluated at x=k.

Original entry on oeis.org

1, 1, 0, 1, 1, -1, 1, 2, 1, 0, 1, 3, 7, 1, 1, 1, 4, 17, 26, 1, 0, 1, 5, 31, 99, 97, 1, -1, 1, 6, 49, 244, 577, 362, 1, 0, 1, 7, 71, 485, 1921, 3363, 1351, 1, 1, 1, 8, 97, 846, 4801, 15124, 19601, 5042, 1, 0, 1, 9, 127, 1351, 10081, 47525, 119071, 114243, 18817, 1, -1
Offset: 0

Views

Author

Seiichi Manyama, Dec 28 2018

Keywords

Examples

			Square array begins:
   1, 1,    1,     1,      1,      1,       1, ...
   0, 1,    2,     3,      4,      5,       6, ...
  -1, 1,    7,    17,     31,     49,      71, ...
   0, 1,   26,    99,    244,    485,     846, ...
   1, 1,   97,   577,   1921,   4801,   10081, ...
   0, 1,  362,  3363,  15124,  47525,  120126, ...
  -1, 1, 1351, 19601, 119071, 470449, 1431431, ...
		

Crossrefs

Mirror of A101124.
Main diagonal gives A115066.
Cf. A323182 (Chebyshev polynomial of the second kind).

Programs

  • Mathematica
    Table[ChebyshevT[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 28 2018 *)
  • PARI
    T(n,k) = polchebyshev(n,1,k);
    matrix(7, 7, n, k, T(n-1,k-1)) \\ Michel Marcus, Dec 28 2018
    
  • PARI
    T(n, k) = round(cos(n*acos(k)));\\ Seiichi Manyama, Mar 05 2021
    
  • PARI
    T(n, k) = if(n==0, 1, n*sum(j=0, n, (2*k-2)^j*binomial(n+j, 2*j)/(n+j))); \\ Seiichi Manyama, Mar 05 2021

Formula

A(0,k) = 1, A(1,k) = k and A(n,k) = 2 * k * A(n-1,k) - A(n-2,k) for n > 1.
A(n,k) = cos(n*arccos(k)). - Seiichi Manyama, Mar 05 2021
A(n,k) = n * Sum_{j=0..n} (2*k-2)^j * binomial(n+j,2*j)/(n+j) for n > 0. - Seiichi Manyama, Mar 05 2021

A212331 a(n) = 5*n*(n+5)/2.

Original entry on oeis.org

0, 15, 35, 60, 90, 125, 165, 210, 260, 315, 375, 440, 510, 585, 665, 750, 840, 935, 1035, 1140, 1250, 1365, 1485, 1610, 1740, 1875, 2015, 2160, 2310, 2465, 2625, 2790, 2960, 3135, 3315, 3500, 3690, 3885, 4085, 4290, 4500, 4715, 4935, 5160, 5390, 5625, 5865
Offset: 0

Views

Author

Bruno Berselli, May 30 2012

Keywords

Comments

Numbers of the form n*t(n+5,h)-(n+5)*t(n,h), where t(k,h) = k*(k+2*h+1)/2 for any h. Likewise:
A000217(n) = n*t(n+1,h)-(n+1)*t(n,h),
A005563(n) = n*t(n+2,h)-(n+2)*t(n,h),
A140091(n) = n*t(n+3,h)-(n+3)*t(n,h),
A067728(n) = n*t(n+4,h)-(n+4)*t(n,h) (n>0),
A140681(n) = n*t(n+6,h)-(n+6)*t(n,h).
This is the case r=7 in the formula:
u(r,n) = (P(r, P(n+r, r+6)) - P(n+r, P(r, r+6))) / ((r+5)*(r+6)/2)^2, where P(s, m) is the m-th s-gonal number.
Also, a(k) is a square for k = (5/2)*(A078986(n)-1).
Sum of reciprocals of a(n), for n>0: 137/750.
Also, numbers h such that 8*h/5+25 is a square.
The table given below as example gives the dimensions D(h, n) of the irreducible SU(3) multiplets (h,n). See the triangle A098737 with offset 0, and the comments there, also with a link and the Coleman reference. - Wolfdieter Lang, Dec 18 2020

Examples

			From the first and second comment derives the following table:
----------------------------------------------------------------
h \ n | 0   1    2    3    4    5    6    7    8    9    10
------|---------------------------------------------------------
0     | 0,  1,   3,   6,  10,  15,  21,  28,  36,  45,   55, ...  (A000217)
1     | 0,  3,   8,  15,  24,  35,  48,  63,  80,  99,  120, ...  (A005563)
2     | 0,  6,  15,  27,  42,  60,  81, 105, 132, 162,  195, ...  (A140091)
3     | 0, 10,  24,  42,  64,  90, 120, 154, 192, 234,  280, ...  (A067728)
4     | 0, 15,  35,  60,  90, 125, 165, 210, 260, 315,  375, ...  (A212331)
5     | 0, 21,  48,  81, 120, 165, 216, 273, 336, 405,  480, ...  (A140681)
6     | 0, 28,  63, 105, 154, 210, 273, 343, 420, 504,  595, ...
7     | 0, 36,  80, 132, 192, 260, 336, 420, 512, 612,  720, ...
8     | 0, 45,  99, 162, 234, 315, 405, 504, 612, 729,  855, ...
9     | 0, 55, 120, 195, 280, 375, 480, 595, 720, 855, 1000, ...
with the formula n*(h+1)*(h+n+1)/2. See also A098737.
		

Crossrefs

Programs

  • Magma
    [5*n*(n+5)/2: n in [0..46]];
    
  • Mathematica
    Table[(5/2) n (n + 5), {n, 0, 46}]
  • PARI
    a(n)=5*n*(n+5)/2 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 5*x*(3-2*x)/(1-x)^3.
a(n) = a(-n-5) = 5*A055998(n).
E.g.f.: (5/2)*x*(x + 6)*exp(x). - G. C. Greubel, Jul 21 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/25 - 47/750. - Amiram Eldar, Feb 26 2022

Extensions

Extended by Bruno Berselli, Aug 05 2015

A247335 The curvature of touching circles inscribed in a special way in the larger segment of circle of radius 10/9 divided by a chord of length 4/3.

Original entry on oeis.org

1, 10, 361, 13690, 519841, 19740250, 749609641, 28465426090, 1080936581761, 41047124680810, 1558709801289001, 59189925324301210, 2247658452522156961, 85351831270517663290, 3241121929827149048041, 123077281502161146162250
Offset: 0

Views

Author

Kival Ngaokrajang, Sep 18 2014

Keywords

Comments

Refer to comment of A240926. Consider a circle C of radius 10/9 (in some length units) with a chord of length 4/3. This has been chosen such that the larger sagitta has length 2. The smaller sagitta has length 2/9. The input, besides the circle C is the circle C_0 with radius R_0 = 1, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle, C_n = 1/R_n, n >= 0, is conjectured to be a(n). If one considers the curvature of touching circles inscribed in the smaller segment, the sequence would be A247512. See an illustration given in the link.
a(n) also seems to be A078986(i)^2 and 10*A097315(j)^2 interleaved; where i = n/2 for n even, j = n/2 - 1/2 for n odd; as following:
1 = 1^2
10 = 10*1^2
361 = 19^2
13690 = 10*37^2
519841 = 721^2
19740250 = 10*1405^2
749609641 = 27379^2
...
A078986; Chebyshev... polynomial: 1, 19, 721, 27379, ...
A097315; Pell equation... : 1, 37, 1405, 53353, ...

Crossrefs

Programs

  • Magma
    I:=[39,-39,1]; [n le 3 select I[n] else Self(n-1) - 10*Self(n-2) + 361*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    LinearRecurrence[{39,-39,1}, {1, 10, 361}, 50] (* or *) Table[Round[((19 + 6*Sqrt[10])^(-n)*(1 + (19 + 6*Sqrt[10])^n)^2)]/4, {n, 0, 30}] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {
    r=0.9;print1(1,", ");r1=r;
    for (n=1,50,
    if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
    ac=sqrt(ab^2-r^2);
    if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
    b=acos(r/ab)-z;
    r=r*(1-cos(b))/(1+cos(b));
    an=floor(9/(10*r));
    print1(if(an>9,an,10),", ")
    )
    }
    
  • PARI
    Vec(-(10*x^2-29*x+1)/((x-1)*(x^2-38*x+1)) + O(x^20)) \\ Colin Barker, Mar 03 2016
    

Formula

Conjectures from Colin Barker, Sep 18 2014: (Start)
a(n) = 39*a(n-1) - 39*a(n-2) + a(n-3).
G.f.: -(10*x^2-29*x+1) / ((x-1)*(x^2-38*x+1)). (End)
From Wolfdieter Lang, Sep 30 2014 (Start)
See the W. Lang link for proofs of the following statements.
One step nonlinear recurrence: a(n) = -9 + 19*a(n-1) + 60*sqrt(a(n-1)*(a(n-1) - 1)/10), n>=1, with a(0) = 1.
a(n) = (1 + A078986(n))/2 = (2 + S(n, 38) - S(n-2, 38))/4 =
(1 + S(n, 38) -19*S(n-1, 38))/2 for n>=0, with Chebyshev's S-polynomials (see A049310). S(n, 38) = A078987(n).
The G.f. conjectured by Colin Barker above follows from the one for Chebyshev's T(n, 19) = A078986(n): (1/(1-x) + (1-19*x)/(1-38*x+x^2))/2 = (1-29*x+10*x^2)/((1-x)* (1-38*x+x^2)).
The four term recurrence conjectured by Colin Barker above follows from the expanded g.f. denominator: (1-x)* (1-38*x+x^2) = 1- 39*x + 39*x^2 - x^3.
(End)
a(n) = ((19+6*sqrt(10))^(-n)*(1+(19+6*sqrt(10))^n)^2)/4. - Colin Barker, Mar 03 2016

A322790 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 17, 5, 1, 1, 99, 49, 7, 1, 1, 577, 485, 97, 9, 1, 1, 3363, 4801, 1351, 161, 11, 1, 1, 19601, 47525, 18817, 2889, 241, 13, 1, 1, 114243, 470449, 262087, 51841, 5291, 337, 15, 1, 1, 665857, 4656965, 3650401, 930249, 116161, 8749, 449, 17, 1
Offset: 0

Views

Author

Seiichi Manyama, Dec 26 2018

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,      1,       1,         1, ...
   1,  3,  17,   99,    577,    3363,     19601, ...
   1,  5,  49,  485,   4801,   47525,    470449, ...
   1,  7,  97, 1351,  18817,  262087,   3650401, ...
   1,  9, 161, 2889,  51841,  930249,  16692641, ...
   1, 11, 241, 5291, 116161, 2550251,  55989361, ...
   1, 13, 337, 8749, 227137, 5896813, 153090001, ...
		

Crossrefs

Columns 0-3 give A000012, A005408, A069129(n+1), A322830.
Main diagonal gives A173174.
A(n-1,n) gives A173148(n).

Programs

  • Mathematica
    A[0, k_] := 1; A[n_, k_] := Sum[Binomial[2 k, 2 j]*(n + 1)^(k - j)*n^j, {j, 0, k}]; Table[A[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 26 2018 *)

Formula

a(n) = 2 * A322699(n) + 1.
A(n,k) + sqrt(A(n,k)^2 - 1) = (sqrt(n+1) + sqrt(n))^(2*k).
A(n,k) - sqrt(A(n,k)^2 - 1) = (sqrt(n+1) - sqrt(n))^(2*k).
A(n,0) = 1, A(n,1) = 2*n+1 and A(n,k) = (4*n+2) * A(n,k-1) - A(n,k-2) for k > 1.
A(n,k) = T_{k}(2*n+1) where T_{k}(x) is a Chebyshev polynomial of the first kind.
T_1(x) = x. So A(n,1) = 2*n+1.

A084070 a(n) = 38*a(n-1) - a(n-2), with a(0)=0, a(1)=6.

Original entry on oeis.org

0, 6, 228, 8658, 328776, 12484830, 474094764, 18003116202, 683644320912, 25960481078454, 985814636660340, 37434995712014466, 1421544022419889368, 53981237856243781518, 2049865494514843808316, 77840907553707820934490, 2955904621546382351702304
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

This sequence gives the values of y in solutions of the Diophantine equation x^2 - 10*y^2 = 1. The corresponding x values are in A078986. - Vincenzo Librandi, Aug 08 2010 [edited by Jon E. Schoenfield, May 04 2014]

Examples

			G.f. = 6*x + 228*x^2 + 8658*x^3 + 328776*x^4 + ... - _Michael Somos_, Feb 24 2023
		

Crossrefs

Programs

  • GAP
    a:=[0,6];; for n in [3..20] do a[n]:=38*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 12 2020
  • Magma
    I:=[0,6]; [n le 2 select I[n] else 38*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Jan 12 2020
    
  • Maple
    seq( simplify(6*ChebyshevU(n-1, 19)), n=0..20); # G. C. Greubel, Jan 12 2020
  • Mathematica
    LinearRecurrence[{38,-1},{0,6},30] (* Harvey P. Dale, Nov 01 2011 *)
    6*ChebyshevU[Range[20]-2, 19] (* G. C. Greubel, Jan 12 2020 *)
  • PARI
    u=0; v=6; for(n=2,20, w=38*v-u; u=v; v=w; print1(w,","))
    
  • PARI
    vector(21, n, 6*polchebyshev(n-2, 2, 19) ) \\ G. C. Greubel, Jan 12 2020
    
  • Sage
    [6*chebyshev_U(n-1, 19) for n in (0..20)] # G. C. Greubel, Jan 12 2020
    

Formula

Numbers k such that 10*k^2 = floor(k*sqrt(10)*ceiling(k*sqrt(10))).
From Mohamed Bouhamida, Sep 20 2006: (Start)
a(n) = 37*(a(n-1) + a(n-2)) - a(n-3).
a(n) = 39*(a(n-1) - a(n-2)) + a(n-3). (End)
From R. J. Mathar, Feb 19 2008: (Start)
O.g.f.: 6*x/(1 - 38*x + x^2).
a(n) = 6*A078987(n-1). (End)
a(n) = 6*ChebyshevU(n-1, 19). - G. C. Greubel, Jan 12 2020
a(n) = A005668(2*n). - Michael Somos, Feb 24 2023

A099366 Squares of A005668.

Original entry on oeis.org

0, 1, 36, 1369, 51984, 1974025, 74960964, 2846542609, 108093658176, 4104712468081, 155870980128900, 5918992532430121, 224765845252215696, 8535183127051766329, 324112192982714904804, 12307728150216114616225
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

See the comment in A099279. This is example a=6.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal) and (1/2,1/2)-fences if there are 6 kinds of half-squares available. A (w,g)-fence is a tile composed of two w X 1 pieces separated horizontally by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/4,1/4)-fences and (1/4,3/4)-fences if there are 6 kinds of (1/4,1/4)-fences available. - Michael A. Allen, Apr 21 2023

Crossrefs

Cf. other squares of k-metallonacci numbers (for k=1 to 10): A007598, A079291, A092936, A099279, A099365, this sequence, A099367, A099369, A099372, A099374.

Programs

  • Maple
    with (combinat):seq(fibonacci(n,6)^2,n=0..15); # Zerinvary Lajos, Apr 09 2008
  • Mathematica
    LinearRecurrence[{37,37,-1},{0,1,36},20] (* Harvey P. Dale, Sep 23 2018 *)

Formula

a(n) = A005668(n)^2.
a(n) = 37*a(n-1) + 37*a(n-2) - a(n-3), n >= 3; a(0)=0, a(1)=1, a(2)=36.
a(n) = 38*a(n-1) - a(n-2) - 2*(-1)^n, n >= 2; a(0)=0, a(1)=1.
a(n) = (T(n, 19) - (-1)^n)/20 with the Chebyshev polynomials of the first kind: T(n, 19) = A078986(n).
G.f.: x*(1-x)/((1 - 38*x + x^2)*(1+x)) = x*(1-x)/(1 - 37*x - 37*x^2 + x^3).
a(n) = (1 - (-1)^n)/2 + 36*Sum_{r=1..n-1} r*a(n-r). - Michael A. Allen, Apr 21 2023
Product_{n>=2} (1 + (-1)^n/a(n)) = (3 + sqrt(10))/6 (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024

A249457 The numerator of curvatures of touching circles inscribed in a special way in the larger segment of a unit circle divided by a chord of length sqrt(84)/5.

Original entry on oeis.org

10, 100, 2890, 96100, 3237610, 109202500, 3683712490, 124263300100, 4191798484810, 141402777864100, 4769968258260490, 160906295771812900, 5427884341892493610, 183099910962324064900, 6176546013641762558890, 208354665265158340802500, 7028469704892605715408010
Offset: 0

Views

Author

Kival Ngaokrajang, Oct 29 2014

Keywords

Comments

The denominators are conjectured to be A005032.
Refer to comments and links of A240926. Consider a unit circle with a chord of length sqrt(84)/5. This has been chosen such that the larger sagitta has length 7/5. The input, besides the unit circle C, is the circle C_0 with radius R_0 = 7/10, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle is C_n = 1/R_n, n >= 0, and its numerator is conjectured to be a(n).
If one considers the curvature of touching circles inscribed in the smaller segment (sagitta length 3/5), the rational sequence would be A249458/A169634. See an illustration given in the link.
For the proof and the formula for the rational curvatures of the circles in the larger segment see a comment under A249862. C_n = (5/7)*(S(n, 34/3) - (17/3)*S(n-1, 34/3) + 1), n >= 0, with Chebyshev's S polynomials (A049310). - Wolfdieter Lang, Nov 07 2014

Crossrefs

Programs

  • Magma
    I:=[10,100,2890]; [n le 3 select I[n] else 37*Self(n-1) - 111*Self(n-2) + 27*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    LinearRecurrence[{37, -111, 27},{10, 100, 2890},16] (* Ray Chandler, Aug 11 2015 *)
    CoefficientList[Series[10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {
    r=0.7;dn=7;print1(round(dn/r),", ");r1=r;
    for (n=1,40,
         if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
         ac=sqrt(ab^2-r^2);
         if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
         b=acos(r/ab)-z;
         r=r*(1-cos(b))/(1+cos(b)); dn=dn*3;
         print1(round(dn/r),", ");
    )
    }
    
  • PARI
    x='x+O('x^30); Vec(10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x))) \\ G. C. Greubel, Dec 20 2017
    

Formula

Empirical g.f.: -10*(30*x^2-27*x+1) /((3*x - 1)*(9*x^2-34*x+1)). - Colin Barker, Oct 29 2014
From Wolfdieter Lang, Nov 07 2014: (Start)
a(n) = 5*(A249862(n) + 3^n) = 5*3^n*(S(n, 34/3) - (17/3)*S(n-1, 34/3) + 1), n >= 0, with Chebyshev's S polynomials (A049310). See the comments on A249862 for the proof.
O.g.f.: 5*((1 - 17*x)/(1 - 34*x + 9*x^2) + 1/(1-3*x)) = 10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x)) proving the conjecture of Colin Barker above. (End)
E.g.f.: 5*exp(3*x)*(1 + exp(14*x)*cosh(2*sqrt(70)*x)). - Stefano Spezia, Mar 24 2023

Extensions

Edited. Name and comment small changes, keyword easy added. - Wolfdieter Lang, Nov 07 2014
a(16) from Stefano Spezia, Mar 24 2023
Showing 1-10 of 17 results. Next