cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A090947 Largest prime factor of numerator of Bernoulli(2n) (or 1 if the numerator is 1).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 691, 7, 3617, 43867, 617, 593, 2294797, 657931, 362903, 1001259881, 305065927, 151628697551, 26315271553053477373, 154210205991661, 1897170067619, 1520097643918070802691, 1798482437, 67568238839737, 153289748932447906241, 47464429777438199, 4534045619429, 1120412849144121779, 19088082706840550550313, 37349583369104129, 109317926249509865753025015237911, 28765594733083851481, 87057315354522179184989699791727, 159562251828620181390358590156239282938769, 5525473366510930028227481
Offset: 0

Views

Author

N. J. A. Sloane, Feb 28 2004

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeFactors[ n_] := Flatten[ Table[ #[[1]], {1} ] & /@ FactorInteger[ n ]]; A090947[n_] := PrimeFactors[ Numerator[ BernoulliB[2n]]][[ -1]]; Table[ A090947[n], {n, 5, 24}] (* Robert G. Wilson v, Feb 28 2004 *)

Formula

a(n) = A006530(abs(A000367(n))). - Amiram Eldar, Feb 09 2020

Extensions

More terms from Robert G. Wilson v and Hans Havermann, Feb 28 2004

A326727 The prime factorization of abs(numerator(B(2k))) for k >= 5, B(k) the k-th Bernoulli number. Factors sorted by size with the smallest factor negated. a(n) = -1 by convention for 1 <= n <= 5.

Original entry on oeis.org

-1, -1, -1, -1, -1, -5, -691, -7, -3617, -43867, -283, 617, -11, 131, 593, -103, 2294797, -13, 657931, -7, 9349, 362903, -5, 1721, 1001259881, -37, 683, 305065927, -17, 151628697551, -26315271553053477373, -19, 154210205991661, -137616929, 1897170067619
Offset: 1

Views

Author

Peter Luschny, Jul 28 2019

Keywords

Comments

For small Bernoulli numbers the factorizations were computed with SageMath, see the b-file for the script. For larger Bernoulli numbers the values were taken from the table of S. S. Wagstaff, Jr..
The smallest factor was negated only to be able to distinguish the individual factorizations easily. (No general formula for the number of factors is known.)
The factorizations listed in the b-file currently go up to B(204) (the prime factors of numerator(B(206)) are not yet known).

Examples

			The data is given as a flatted list of factorizations written with the conventions
stated above. Because it is a list the offset is 1. The list starts:
[[-1], [-1], [-1], [-1], [-1], [-5], [-691], [-7], [-3617], [-43867], [-283, 617], [-11, 131, 593], [-103, 2294797], [-13, 657931], [-7, 9349, 362903], ... ].
.
The first few factorizations are:
B(10) = 5;
B(12) = 691;
B(14) = 7;
B(16) = 3617;
B(18) = 43867;
B(20) = 283 * 617;
B(22) = 11 * 131 * 593;
B(24) = 103 * 2294797;
B(26) = 13 * 657931;
B(28) = 7 * 9349 * 362903;
B(30) = 5 * 1721 * 1001259881;
		

Crossrefs

Programs

  • Sage
    # See b-file.

A332300 The least prime factor of the numerator of Bernoulli(2*n), or 1 if the numerator is 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 691, 7, 3617, 43867, 283, 11, 103, 13, 7, 5, 37, 17, 26315271553053477373, 19, 137616929, 1520097643918070802691, 11, 23, 653, 5, 13, 39409, 7, 29, 2003, 31, 1226592271, 11, 17, 5, 3112655297839, 37, 19, 13, 631, 41, 233, 43, 11, 5, 23, 47, 7823741903
Offset: 0

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Comments

a(n)=5 if and only if n is in A017329. - Robert Israel, Feb 09 2020
From Chai Wah Wu, Feb 10 2020: (Start)
For n > 1, clearly if a(n) = n, then n is prime. However, the converse is not true. Prime numbers p such that a(p) != p are: 2, 3, 109, 167, 211, 227, 271, ...
Conjecture: for prime p > 3, p is a prime factor of the numerator of Bernoulli(2*p), thus the conjecture implies that a(p) <= p for prime p.
(End)

Examples

			a(10) = 283, since Bernoulli(2*10) = -174611/330, and 283 is the least prime factor of its numerator, 174611 = 283 * 617.
		

Crossrefs

Programs

  • Magma
    [n le 4 select 1 else Min(PrimeDivisors(Abs(Numerator(Bernoulli(2*n))))):n in [0..48]]; // Marius A. Burtea, Feb 09 2020
    
  • Mathematica
    Array[FactorInteger[Abs @ Numerator @  BernoulliB[2*#]][[1, 1]] &, 30, 0]
  • PARI
    a(n) = my(x=abs(numerator(bernfrac(2*n)))); if (x==1, 1, vecmin(factor(x)[,1])); \\ Michel Marcus, Feb 09 2020
    
  • Python
    from sympy import bernoulli, primefactors
    def A332300(n):
        x = abs(bernoulli(2*n).p)
        return 1 if x == 1 else min(primefactors(x)) # Chai Wah Wu, Feb 10 2020

Formula

a(n) = A020639(abs(A000367(n))).

A110841 a(n) is the number of prime factors, with multiplicity, of abs(A014509(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 7, 7, 2, 2, 4, 3, 3, 7, 1, 6, 4, 5, 14, 4, 9, 5, 10, 3, 11, 2, 5, 3, 7, 11, 5, 3, 4, 15, 6, 5, 19, 10, 6, 13, 15, 5, 10, 5, 5, 6, 7, 5, 15, 7, 5, 2, 13, 4, 3, 10, 5, 9, 7, 5, 4, 9, 5, 4, 1, 7, 4, 4, 5, 3, 11, 13, 10, 5, 5, 7, 6
Offset: 0

Views

Author

Jonathan Vos Post, Sep 16 2005

Keywords

Examples

			a(10) = 2 because A014509(10) = 529 = 23^2.
a(8) = a(19) = 1 since A014509(8) and A014509(19) are prime.
		

Crossrefs

Programs

  • PARI
    a(n) = my(b=bernfrac(2*n), c=floor(abs(b))*sign(b)); if (c==0, 0, bigomega(c)); \\ Michel Marcus, Mar 29 2020

Formula

a(n) = A001222(abs(A014509(n))).

Extensions

More terms from Michel Marcus, Mar 29 2020
a(51)-a(65) from Jinyuan Wang, Apr 02 2020
More terms from Sean A. Irvine, Jul 29 2024
Showing 1-4 of 4 results.