cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079343 Period 6: repeat [0, 1, 1, 2, 3, 1]; also F(n) mod 4, where F(n) = A000045(n).

Original entry on oeis.org

0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1
Offset: 0

Views

Author

Jon Perry, Jan 04 2003

Keywords

Comments

This sequence shows that every sixth Fibonacci number (A134492) is divisible by 4. - Alonso del Arte, Jul 27 2013

Examples

			a(5) = F(5) mod 4 = 5 mod 4 = 1.
a(6) = F(6) mod 4 = 8 mod 4 = 0.
a(7) = F(7) mod 4 = 13 mod 4 = 1.
		

Crossrefs

Programs

  • Magma
    [Fibonacci(n) mod 4: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
  • Maple
    A079343:=n->[0, 1, 1, 2, 3, 1][(n mod 6)+1]: seq(A079343(n), n=0..100); # Wesley Ivan Hurt, Jun 20 2016
  • Mathematica
    PadLeft[{}, 108, {0, 1, 1, 2, 3, 1}] (* Harvey P. Dale, Aug 10 2011 *)
    Table[Mod[Fibonacci[n], 4], {n, 0, 127}] (* Alonso del Arte, Jul 27 2013 *)
    LinearRecurrence[{1, -1, 1, -1, 1},{0, 1, 1, 2, 3},105] (* Ray Chandler, Aug 27 2015 *)
  • PARI
    for (n=0,100,print1(fibonacci(n)%4","))
    

Formula

a(n) = 2^(1 - P(3, n) + P(6, n+2))*3^P(6, n+3) - 1, where P(k, n) = floor(1/2*cos(2*n*Pi/k) + 1/2). [Gary Detlefs, May 16 2011]
a(n) = 4/3 - cos(Pi*n/3) - sin(Pi*n/3)/sqrt(3) - cos(2*Pi*n/3)/3 + sin(2*Pi*n/3)/sqrt(3). - R. J. Mathar, Oct 08 2011
G.f.: x*(1+2*x^2+x^3) / ( (1-x)*(1-x+x^2)*(1+x+x^2) ). - R. J. Mathar, Jul 14 2012
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n>4. - Wesley Ivan Hurt, Jun 20 2016
E.g.f.: 2*(2*exp(x) - sqrt(3)*sin(sqrt(3)*x/2)*sinh(x/2) - cos(sqrt(3)*x/2)*(sinh(x/2) + 2*cosh(x/2)))/3. - Ilya Gutkovskiy, Jun 20 2016