A120721 Partial sums of A079645.
1, 3, 6, 10, 15, 21, 28, 36, 46, 58, 72, 88, 106, 126, 148, 172, 198, 225, 255, 288, 324, 363, 405, 450, 498, 549, 603, 660, 720, 783, 847, 915, 987, 1063, 1143, 1227, 1315, 1407, 1503, 1603, 1707, 1815, 1927, 2043, 2163, 2287, 2412, 2542, 2677, 2817, 2962, 3112, 3267
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
A079645:=[n: n in [1..500] | n mod Floor(n^(1/3)) eq 0 ]; [(&+[A079645[k]: k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 20 2023
-
Mathematica
Accumulate[Select[Range[300],Divisible[#,Floor[CubeRoot[#]]]&]] (* Harvey P. Dale, Jun 19 2023 *)
-
SageMath
A079645=[j for j in (1..500) if j%(floor(j^(1/3)))==0] def A120721(n): return sum(A079645[k] for k in range(n+1)) [A120721(n) for n in range(101)] # G. C. Greubel, Jul 20 2023
Formula
a(n) = Sum_{j=1..n} A079645(j).
a(n) ~ 2^(5/2)*n^(5/2)/(5*3^(3/2)) - 5*n^2/6. - Vaclav Kotesovec, Oct 13 2024
Comments