A079750
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of comparisons required to find j in step L2.2'.
Original entry on oeis.org
0, 4, 25, 156, 1099, 8800, 79209, 792100, 8713111, 104557344, 1359245485, 19029436804, 285441552075, 4567064833216, 77640102164689, 1397521838964420, 26552914940323999, 531058298806480000, 11152224274936080021
Offset: 3
-
c Program available at link.
-
a:=n->sum((n+1)!/j!,j=3..n): seq(a(n), n=2..20); # Zerinvary Lajos, Oct 20 2006
-
a[3] = 0; a[n_] := n*a[n - 1] + n; Table[a[n], {n, 3, 21}]
A079756
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of interchanges in reversal step.
Original entry on oeis.org
0, 0, 4, 29, 215, 1734, 15630, 156327, 1719637, 20635688, 268264004, 3755696121, 56335441899, 901367070474, 15323240198170, 275818323567179, 5240548147776545, 104810962955531052, 2201030222066152272
Offset: 3
-
a[3] = 0; a[4] = 0; a[n_] := n*a[n - 1] + (n - 1)*(Floor[(n - 1)/2] - 1); Table[a[n ], {n, 3, 21}]
-
l=[0, 0, 0, 0, 0]
for n in range(5, 22):
l.append(n*l[n - 1] + (n - 1)*((n - 1)//2 - 1))
print(l[3:]) # Indranil Ghosh, Jul 18 2017
A079751
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of cases where the j search loop runs beyond j=n-3.
Original entry on oeis.org
0, 1, 6, 37, 260, 2081, 18730, 187301, 2060312, 24723745, 321408686, 4499721605, 67495824076, 1079933185217, 18358864148690, 330459554676421, 6278731538852000, 125574630777040001, 2637067246317840022, 58015479418992480485, 1334356026636827051156
Offset: 3
-
a:=n->sum((n-j)!*binomial(n,j),j=4..n): seq(a(n), n=3..25); # Zerinvary Lajos, Jul 31 2006
-
a[3] = 0; a[n_] := n*a[n - 1] + 1; Table[a[n], {n, 3, 21}]
A079752
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of times the search for an element exchangeable with a_j has to be started.
Original entry on oeis.org
0, 2, 13, 82, 579, 4638, 41749, 417498, 4592487, 55109854, 716428113, 10029993594, 150449903923, 2407198462782, 40922373867309, 736602729611578, 13995451862619999, 279909037252399998, 5878089782300399977
Offset: 3
A079753
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives total executions of step L3.1'.
Original entry on oeis.org
0, 3, 21, 136, 967, 7757, 69841, 698446, 7682951, 92195467, 1198541137, 16779575996, 251693640031, 4027098240601, 68460670090337, 1232292061626202, 23413549170897991, 468270983417959991, 9833690651777160001
Offset: 3
A079754
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of times l has to be repeatedly decreased in step L3.1'.
Original entry on oeis.org
0, 1, 8, 54, 388, 3119, 28092, 280948, 3090464, 37085613, 482113024, 6749582402, 101243736108, 1619899777819, 27538296223028, 495689332014624, 9418097308277992, 188361946165559993, 3955600869476760024
Offset: 3
A080048
Operation count to create all permutations of n distinct elements using Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of loop repetitions in reversal step.
Original entry on oeis.org
1, 7, 34, 182, 1107, 7773, 62212, 559948, 5599525, 61594835, 739138086, 9608795202, 134523132919, 2017846993897, 32285551902472, 548854382342168, 9879378882159177, 187708198761024543, 3754163975220491050
Offset: 2
- D. E. Knuth: The Art of Computer Programming, Volume 4, Combinatorial Algorithms, Volume 4A, Enumeration and Backtracking. Pre-fascicle 2B, A draft of section 7.2.1.2: Generating all permutations. Available online; see link.
A079885
Number of index tests required to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2.
Original entry on oeis.org
0, 4, 29, 185, 1314, 10534, 94839, 948427, 10432748, 125193032, 1627509489, 22785132925
Offset: 3
- For references and corresponding links see under A079884
Showing 1-8 of 8 results.
Comments