A056542
a(n) = n*a(n-1) + 1, a(1) = 0.
Original entry on oeis.org
0, 1, 4, 17, 86, 517, 3620, 28961, 260650, 2606501, 28671512, 344058145, 4472755886, 62618582405, 939278736076, 15028459777217, 255483816212690, 4598708691828421, 87375465144740000, 1747509302894800001, 36697695360790800022, 807349297937397600485
Offset: 1
a(4) = 4*a(3) + 1 = 4*4 + 1 = 17.
Permutations of order 3 .. Length of first run * First position
123..3*1
132..2*1
213..1*2
231..2*2
312..1*3
321..1*3
a(4) = 3+2+2+4+3+3 = 17. - _Olivier Gérard_, Jul 07 2011
- D. E. Knuth: The Art of Computer Programming, Volume 4, Combinatorial Algorithms, Volume 4A, Enumeration and Backtracking. Pre-fascicle 2B, A draft of section 7.2.1.2: Generating all permutations. Available online; see link.
- T. D. Noe, Table of n, a(n) for n = 1..100
- D. E. Knuth, TAOCP Vol. 4, Pre-fascicle 2b (generating all permutations).
- Tom Muller, Prime and Composite Terms in Sloane's Sequence A056542, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.3. [Includes factorizations of a(1) through a(50)]
- Hugo Pfoertner, FORTRAN implementation of Knuth's Algorithm L for lexicographic permutation generation.
- R. Sedgewick, Permutation generation methods, Computing Surveys, 9 (1977), 137-164.
- Sam Wagstaff, Factorizations of a(51) through a(90)
-
a056542 n = a056542_list !! (n-1)
a056542_list = 0 : map (+ 1) (zipWith (*) [2..] a056542_list)
-- Reinhard Zumkeller, Mar 24 2013
-
[n le 2 select n-1 else n*Self(n-1)+1: n in [1..20]]; // Bruno Berselli, Dec 13 2013
-
tmp=0; Join[{tmp}, Table[tmp=n*tmp+1, {n, 2, 100}]] (* T. D. Noe, Jul 12 2005 *)
FoldList[ #1*#2 + 1 &, 0, Range[2, 21]] (* Robert G. Wilson v, Oct 11 2005 *)
A079750
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of comparisons required to find j in step L2.2'.
Original entry on oeis.org
0, 4, 25, 156, 1099, 8800, 79209, 792100, 8713111, 104557344, 1359245485, 19029436804, 285441552075, 4567064833216, 77640102164689, 1397521838964420, 26552914940323999, 531058298806480000, 11152224274936080021
Offset: 3
-
c Program available at link.
-
a:=n->sum((n+1)!/j!,j=3..n): seq(a(n), n=2..20); # Zerinvary Lajos, Oct 20 2006
-
a[3] = 0; a[n_] := n*a[n - 1] + n; Table[a[n], {n, 3, 21}]
A079756
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of interchanges in reversal step.
Original entry on oeis.org
0, 0, 4, 29, 215, 1734, 15630, 156327, 1719637, 20635688, 268264004, 3755696121, 56335441899, 901367070474, 15323240198170, 275818323567179, 5240548147776545, 104810962955531052, 2201030222066152272
Offset: 3
-
a[3] = 0; a[4] = 0; a[n_] := n*a[n - 1] + (n - 1)*(Floor[(n - 1)/2] - 1); Table[a[n ], {n, 3, 21}]
-
l=[0, 0, 0, 0, 0]
for n in range(5, 22):
l.append(n*l[n - 1] + (n - 1)*((n - 1)//2 - 1))
print(l[3:]) # Indranil Ghosh, Jul 18 2017
A079755
Operation count to create all permutations of n distinct elements using the "streamlined" version of Knuth's Algorithm L (lexicographic permutation generation).
Original entry on oeis.org
0, 3, 23, 148, 1054, 8453, 76109, 761126, 8372436, 100469287, 1306100803, 18285411320, 274281169898, 4388498718473, 74604478214169, 1342880607855178, 25514731549248544, 510294630984971051, 10716187250684392271, 235756119515056630172, 5422390748846302494198, 130137377972311259861005
Offset: 3
- Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2.
- See also under A079884.
-
Program available at Pfoertner link.
-
a[3] = 0; a[n_] := n*a[n - 1] + (n - 1)*Floor[(n - 1)/2]; Table[a[n], {n, 3, 21}]
RecurrenceTable[{a[3]==0,a[n]==n*a[n-1]+(n-1)Floor[(n-1)/2]},a,{n,20}] (* Harvey P. Dale, May 31 2019 *)
A079752
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of times the search for an element exchangeable with a_j has to be started.
Original entry on oeis.org
0, 2, 13, 82, 579, 4638, 41749, 417498, 4592487, 55109854, 716428113, 10029993594, 150449903923, 2407198462782, 40922373867309, 736602729611578, 13995451862619999, 279909037252399998, 5878089782300399977
Offset: 3
A079753
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives total executions of step L3.1'.
Original entry on oeis.org
0, 3, 21, 136, 967, 7757, 69841, 698446, 7682951, 92195467, 1198541137, 16779575996, 251693640031, 4027098240601, 68460670090337, 1232292061626202, 23413549170897991, 468270983417959991, 9833690651777160001
Offset: 3
A079754
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of times l has to be repeatedly decreased in step L3.1'.
Original entry on oeis.org
0, 1, 8, 54, 388, 3119, 28092, 280948, 3090464, 37085613, 482113024, 6749582402, 101243736108, 1619899777819, 27538296223028, 495689332014624, 9418097308277992, 188361946165559993, 3955600869476760024
Offset: 3
A079885
Number of index tests required to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2.
Original entry on oeis.org
0, 4, 29, 185, 1314, 10534, 94839, 948427, 10432748, 125193032, 1627509489, 22785132925
Offset: 3
- For references and corresponding links see under A079884
Showing 1-8 of 8 results.
Comments