cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A056542 a(n) = n*a(n-1) + 1, a(1) = 0.

Original entry on oeis.org

0, 1, 4, 17, 86, 517, 3620, 28961, 260650, 2606501, 28671512, 344058145, 4472755886, 62618582405, 939278736076, 15028459777217, 255483816212690, 4598708691828421, 87375465144740000, 1747509302894800001, 36697695360790800022, 807349297937397600485
Offset: 1

Views

Author

Henry Bottomley, Jun 20 2000

Keywords

Comments

For n >= 2 also operation count to create all permutations of n distinct elements using Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of loop repetitions of the j search loop in step L2. - Hugo Pfoertner, Feb 06 2003
More directly: sum over all permutations of length n-1 of the product of the length of the first increasing run by the value of the first position. The recurrence follows from this definition. - Olivier Gérard, Jul 07 2011
This sequence shares divisibility properties with A000522; each of the primes in A072456 divide only a finite number of terms of this sequence. - T. D. Noe, Jul 07 2005
This sequence also represents the number of subdeterminant evaluations when calculation a determinant by Laplace recursive method. - Reinhard Muehlfeld, Sep 14 2010
Also, a(n) equals the number of non-isomorphic directed graphs of n+1 vertices with 1 component, where each vertex has exactly one outgoing edge, excluding loops and cycle graphs. - Stephen Dunn, Nov 30 2019

Examples

			a(4) = 4*a(3) + 1 = 4*4 + 1 = 17.
Permutations of order 3 .. Length of first run * First position
123..3*1
132..2*1
213..1*2
231..2*2
312..1*3
321..1*3
a(4) = 3+2+2+4+3+3 = 17. - _Olivier Gérard_, Jul 07 2011
		

References

  • D. E. Knuth: The Art of Computer Programming, Volume 4, Combinatorial Algorithms, Volume 4A, Enumeration and Backtracking. Pre-fascicle 2B, A draft of section 7.2.1.2: Generating all permutations. Available online; see link.

Crossrefs

Cf. A079751 (same recursion formula, but starting from a(3)=0), A038155, A038156, A080047, A080048, A080049.
Equals the row sums of A162995 triangle (n>=2). - Johannes W. Meijer, Jul 21 2009
Cf. A070213 (indices of primes).

Programs

  • Haskell
    a056542 n = a056542_list !! (n-1)
    a056542_list = 0 : map (+ 1) (zipWith (*) [2..] a056542_list)
    -- Reinhard Zumkeller, Mar 24 2013
    
  • Magma
    [n le 2 select n-1 else n*Self(n-1)+1: n in [1..20]]; // Bruno Berselli, Dec 13 2013
  • Mathematica
    tmp=0; Join[{tmp}, Table[tmp=n*tmp+1, {n, 2, 100}]] (* T. D. Noe, Jul 12 2005 *)
    FoldList[ #1*#2 + 1 &, 0, Range[2, 21]] (* Robert G. Wilson v, Oct 11 2005 *)

Formula

a(n) = floor((e-2)*n!).
a(n) = A002627(n) - n!.
a(n) = A000522(n) - 2*n!.
a(n) = n! - A056543(n).
a(n) = (n-1)*(a(n-1) + a(n-2)) + 2, n > 2. - Gary Detlefs, Jun 22 2010
1/(e - 2) = 2! - 2!/(1*4) - 3!/(4*17) - 4!/(17*86) - 5!/(86*517) - ... (see A002627 and A185108). - Peter Bala, Oct 09 2013
E.g.f.: (exp(x) - 1 - x) / (1 - x). - Ilya Gutkovskiy, Jun 26 2022

Extensions

More terms from James Sellers, Jul 04 2000

A079750 Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of comparisons required to find j in step L2.2'.

Original entry on oeis.org

0, 4, 25, 156, 1099, 8800, 79209, 792100, 8713111, 104557344, 1359245485, 19029436804, 285441552075, 4567064833216, 77640102164689, 1397521838964420, 26552914940323999, 531058298806480000, 11152224274936080021
Offset: 3

Views

Author

Hugo Pfoertner, Jan 14 2003

Keywords

Comments

The asymptotic value for large n is 0.21828...*n! See also comment for A079884

References

Crossrefs

Programs

  • Fortran
    c Program available at link.
  • Maple
    a:=n->sum((n+1)!/j!,j=3..n): seq(a(n), n=2..20); # Zerinvary Lajos, Oct 20 2006
  • Mathematica
    a[3] = 0; a[n_] := n*a[n - 1] + n; Table[a[n], {n, 3, 21}]

Formula

a(3)=0, a(n) = n * a(n-1) + n for n >= 4.
a(n) = Sum_{j=3..n} (n+1)!/j!. - Zerinvary Lajos, Oct 20 2006
For n >= 3, a(n) = floor((e - 5/2)*n! - 1/2). - Benoit Cloitre, Aug 03 2007

Extensions

Edited and extended by Robert G. Wilson v, Jan 22 2003

A079756 Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of interchanges in reversal step.

Original entry on oeis.org

0, 0, 4, 29, 215, 1734, 15630, 156327, 1719637, 20635688, 268264004, 3755696121, 56335441899, 901367070474, 15323240198170, 275818323567179, 5240548147776545, 104810962955531052, 2201030222066152272
Offset: 3

Views

Author

Hugo Pfoertner, Jan 16 2003

Keywords

Comments

The asymptotic value for large n is 0.04308...*n! = (e+1/e-3)/2 * n! See also comment for A079884.

References

Crossrefs

Programs

  • Mathematica
    a[3] = 0; a[4] = 0; a[n_] := n*a[n - 1] + (n - 1)*(Floor[(n - 1)/2] - 1); Table[a[n ], {n, 3, 21}]
  • Python
    l=[0, 0, 0, 0, 0]
    for n in range(5, 22):
        l.append(n*l[n - 1] + (n - 1)*((n - 1)//2 - 1))
    print(l[3:]) # Indranil Ghosh, Jul 18 2017

Formula

a(3)=0, a(4)=0, a(n) = n*a(n-1) + (n-1)*(floor((n-1)/2)-1) for n>=5.
For n>=3, a(n) = floor(c*n!-(n-3)/2) where c = lim_{n->infinity} a(n)/n! = 0.04308063481524377... - Benoit Cloitre, Jan 19 2003
Recurrence: (n-5)*(n-3)*(n-2)*a(n) = (n-3)*(n^3 - 7*n^2 + 11*n - 1)*a(n-1) - (n-1)*(2*n - 5)*a(n-2) - (n-4)*(n-2)^2*(n-1)*a(n-3). - Vaclav Kotesovec, Mar 16 2014

Extensions

More terms from Benoit Cloitre and Robert G. Wilson v, Jan 19 2003

A079755 Operation count to create all permutations of n distinct elements using the "streamlined" version of Knuth's Algorithm L (lexicographic permutation generation).

Original entry on oeis.org

0, 3, 23, 148, 1054, 8453, 76109, 761126, 8372436, 100469287, 1306100803, 18285411320, 274281169898, 4388498718473, 74604478214169, 1342880607855178, 25514731549248544, 510294630984971051, 10716187250684392271, 235756119515056630172, 5422390748846302494198, 130137377972311259861005
Offset: 3

Views

Author

Hugo Pfoertner, Jan 16 2003

Keywords

Comments

Sequence gives number of loop repetitions in reversal step.
The asymptotic value for large n is 0.20975...*n! = (e + 1/e - 8/3)/2 * n!. See also comment for A079884.

References

  • Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2.
  • See also under A079884.

Crossrefs

Programs

  • Fortran
    Program available at Pfoertner link.
  • Mathematica
    a[3] = 0; a[n_] := n*a[n - 1] + (n - 1)*Floor[(n - 1)/2]; Table[a[n], {n, 3, 21}]
    RecurrenceTable[{a[3]==0,a[n]==n*a[n-1]+(n-1)Floor[(n-1)/2]},a,{n,20}] (* Harvey P. Dale, May 31 2019 *)

Formula

a(3) = 0, a(n) = n * a(n - 1) + (n - 1)*floor((n - 1)/2) for n >= 4.
a(n) = floor(c*n! - (n - 1)/2) for n > 4, where c = lim n -> infinity a(n)/n! = 0.209747301481910445... - Benoit Cloitre, Jan 19 2003

Extensions

More terms from Benoit Cloitre and Robert G. Wilson v, Jan 19 2003

A079752 Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of times the search for an element exchangeable with a_j has to be started.

Original entry on oeis.org

0, 2, 13, 82, 579, 4638, 41749, 417498, 4592487, 55109854, 716428113, 10029993594, 150449903923, 2407198462782, 40922373867309, 736602729611578, 13995451862619999, 279909037252399998, 5878089782300399977
Offset: 3

Views

Author

Hugo Pfoertner, Jan 14 2003

Keywords

Comments

The asymptotic value for large n is 0.11505...*n! = (17/6-e)*n!. See also comment for A079884

Crossrefs

Programs

  • Mathematica
    a[3] = 0; a[n_] := n*a[n - 1] + n - 2; Table[a[n], {n, 3, 21}]

Formula

a(3)=0, a(n) = n * a(n-1) + n - 2 for n>=4

Extensions

Edited and extended by Robert G. Wilson v, Jan 22 2003

A079753 Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives total executions of step L3.1'.

Original entry on oeis.org

0, 3, 21, 136, 967, 7757, 69841, 698446, 7682951, 92195467, 1198541137, 16779575996, 251693640031, 4027098240601, 68460670090337, 1232292061626202, 23413549170897991, 468270983417959991, 9833690651777160001
Offset: 3

Views

Author

Hugo Pfoertner, Jan 16 2003

Keywords

Comments

The asymptotic value for large n is 0.19247...*n! = (e/2-7/6)*n!. See also comment for A079884.

References

Crossrefs

Programs

  • Mathematica
    a[3] = 0; a[n_] := n*a[n - 1] + (n - 1)*(n - 2)/2; Table[a[n], {n, 3, 21}]

Formula

a(3)=0, a(n)= n*a(n-1) + (n-1)*(n-2)/2 for n>=4 a(n) = A079752(n) + A079754(n)
For n>=3, a(n)=floor(c*n!-(n-1)/2) where c=limit n-->infinity a(n)/n!= 0.192474247562855951... - Benoit Cloitre, Jan 20 2003

Extensions

Edited and extended by Robert G. Wilson v, Jan 22 2003

A079754 Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of times l has to be repeatedly decreased in step L3.1'.

Original entry on oeis.org

0, 1, 8, 54, 388, 3119, 28092, 280948, 3090464, 37085613, 482113024, 6749582402, 101243736108, 1619899777819, 27538296223028, 495689332014624, 9418097308277992, 188361946165559993, 3955600869476760024
Offset: 3

Views

Author

Hugo Pfoertner, Jan 16 2003

Keywords

Comments

The asymptotic value for large n is 0.07742...*n! See also comment for A079884.
Lim_{n->infinity} a(n)/n! = 3*e/2 - 4. - Hugo Pfoertner, Sep 02 2017

References

Crossrefs

Programs

  • Mathematica
    a[3] = 0; a[n_] := n*a[n - 1] + (n - 2)*(n - 3)/2; Table[a[n], {n, 3, 21}]

Formula

a(3)=0, a(n) = n*a(n-1) + (n-2)*(n-3)/2 for n>=4 a(n) = A079753(n) - A079752(n)
For n>=3 a(n)=floor(c*n!-(n-3)/2) where c=limit n --> infinity a(n)/n!=0.077422742688567853... - Benoit Cloitre, Jan 20 2003

Extensions

Edited and extended by Robert G. Wilson v, Jan 22 2003

A079885 Number of index tests required to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2.

Original entry on oeis.org

0, 4, 29, 185, 1314, 10534, 94839, 948427, 10432748, 125193032, 1627509489, 22785132925
Offset: 3

Views

Author

Hugo Pfoertner, Jan 13 2003

Keywords

Comments

The required number of index tests (test for termination and test in the final reversion loop) becomes 0.2613625*n! for large n, if the test for n=3 is excluded. If n=3 is included the additionally required termination test adds n!/6 index comparisons, increasing the number of index comparisons to 0.428029*n! (63.8% more index comparisons).
The corresponding number of index tests needed by the "pure" Algorithm L is given by A038156(n)+A080048(n), which is 12.478..*a(n) for large n.

References

  • For references and corresponding links see under A079884

Crossrefs

Cf. A000142, partial counts given in A079751, A079755. Number of element comparisons: A079884.

Programs

  • Fortran
    ! program available at link

Formula

a(3)=0, a(n)=n*a(n-1)+1+(n-1)*floor((n-1)/2) for n>=4 a(n) = A079751(n) + A079755(n)
For n>=3 a(n)=floor(c*n!-(n-3)/2) where c=limit n-->infinity a(n)/n!= 0.261362463274289013838... - Benoit Cloitre, Jan 20 2003
In closed form, c = 3*exp(1)/2 + exp(-1)/2 - 4. - Vaclav Kotesovec, Mar 18 2014
Showing 1-8 of 8 results.