A079750
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of comparisons required to find j in step L2.2'.
Original entry on oeis.org
0, 4, 25, 156, 1099, 8800, 79209, 792100, 8713111, 104557344, 1359245485, 19029436804, 285441552075, 4567064833216, 77640102164689, 1397521838964420, 26552914940323999, 531058298806480000, 11152224274936080021
Offset: 3
-
c Program available at link.
-
a:=n->sum((n+1)!/j!,j=3..n): seq(a(n), n=2..20); # Zerinvary Lajos, Oct 20 2006
-
a[3] = 0; a[n_] := n*a[n - 1] + n; Table[a[n], {n, 3, 21}]
A079751
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of cases where the j search loop runs beyond j=n-3.
Original entry on oeis.org
0, 1, 6, 37, 260, 2081, 18730, 187301, 2060312, 24723745, 321408686, 4499721605, 67495824076, 1079933185217, 18358864148690, 330459554676421, 6278731538852000, 125574630777040001, 2637067246317840022, 58015479418992480485, 1334356026636827051156
Offset: 3
-
a:=n->sum((n-j)!*binomial(n,j),j=4..n): seq(a(n), n=3..25); # Zerinvary Lajos, Jul 31 2006
-
a[3] = 0; a[n_] := n*a[n - 1] + 1; Table[a[n], {n, 3, 21}]
A079755
Operation count to create all permutations of n distinct elements using the "streamlined" version of Knuth's Algorithm L (lexicographic permutation generation).
Original entry on oeis.org
0, 3, 23, 148, 1054, 8453, 76109, 761126, 8372436, 100469287, 1306100803, 18285411320, 274281169898, 4388498718473, 74604478214169, 1342880607855178, 25514731549248544, 510294630984971051, 10716187250684392271, 235756119515056630172, 5422390748846302494198, 130137377972311259861005
Offset: 3
- Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2.
- See also under A079884.
-
Program available at Pfoertner link.
-
a[3] = 0; a[n_] := n*a[n - 1] + (n - 1)*Floor[(n - 1)/2]; Table[a[n], {n, 3, 21}]
RecurrenceTable[{a[3]==0,a[n]==n*a[n-1]+(n-1)Floor[(n-1)/2]},a,{n,20}] (* Harvey P. Dale, May 31 2019 *)
A079752
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of times the search for an element exchangeable with a_j has to be started.
Original entry on oeis.org
0, 2, 13, 82, 579, 4638, 41749, 417498, 4592487, 55109854, 716428113, 10029993594, 150449903923, 2407198462782, 40922373867309, 736602729611578, 13995451862619999, 279909037252399998, 5878089782300399977
Offset: 3
A079753
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives total executions of step L3.1'.
Original entry on oeis.org
0, 3, 21, 136, 967, 7757, 69841, 698446, 7682951, 92195467, 1198541137, 16779575996, 251693640031, 4027098240601, 68460670090337, 1232292061626202, 23413549170897991, 468270983417959991, 9833690651777160001
Offset: 3
A079754
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of times l has to be repeatedly decreased in step L3.1'.
Original entry on oeis.org
0, 1, 8, 54, 388, 3119, 28092, 280948, 3090464, 37085613, 482113024, 6749582402, 101243736108, 1619899777819, 27538296223028, 495689332014624, 9418097308277992, 188361946165559993, 3955600869476760024
Offset: 3
A080049
Operation count to create all permutations of n distinct elements using Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of interchange operations in step L4.
Original entry on oeis.org
0, 2, 11, 63, 388, 2734, 21893, 197069, 1970726, 21678036, 260136487, 3381774403, 47344841720, 710172625898, 11362762014473, 193166954246169, 3477005176431178, 66063098352192544, 1321261967043851051, 27746501307920872271, 610423028774259190172, 14039729661807961374198
Offset: 2
- Donald E. Knuth: The Art of Computer Programming, Volume 4, Fascicle 2, Generating All Tuples and Permutations. Addison-Wesley (2005). Chapter 7.2.1.2, 39-40.
A080093
Let sum(k>=0, k^n/(2*k+1)!) = (x(n)*e + y(n)/e)/z(n), where x(n) and z(n) are >0, then a(n)=x(n).
Original entry on oeis.org
0, 1, 1, 2, 11, 41, 81, 715, 3425, 8861, 98253, 580317, 1816640, 24011157, 166888165, 608035190, 9264071767, 73600798037, 304238004061, 5224266196935, 46499892038437, 214184962059157, 4078345814329009, 40073660040755337
Offset: 1
Values of sum(k>=0,k^n/(2*k+1)!) = (x(n)*e + y(n)/e)/z(n) are given by n=1: (1/e)/2 = 0.183939720585721160..., n=2: (e - 3/e)/8 = 0.201830438118089783..., n=3: (e + 3/e)/16 = 0.238870009498335762..., n=4: (2e - 1/e)/16 = 0.316792763484165509..., n=5: (11e + 3/e)/64 = 0.484449038071309758..., n=6: (41e - 5/e)/128 = 0.856329357507528461..., n=7: (81e - 2/e)/128 = 1.71441460330343577..., n=8: (715e - 5/e)/512 = 3.79244552762179713..., n=9: (3425e + 55/e)/1024 = 9.11166858568033130..., n=10: (8861e + 106/e)/1024 = 23.5602446315818092...
Showing 1-8 of 8 results.
Comments