cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079979 Characteristic function of multiples of six.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Period 6: repeat [1, 0, 0, 0, 0, 0].
a(n)=1 if n=6k, a(n)=0 otherwise.
Decimal expansion of 1/999999.
Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=3, r=3, I={-2,-1,0,1,2}.
Also, number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=5, I={0,1,2,3,4}.
a(n) is also the number of partitions of n such that each part is six (a(0)=1 because the empty partition has no parts to test equality with six). Hence a(n) is also the number of 2-regular graphs on n vertices with each part having girth exactly six. - Jason Kimberley, Oct 10 2011
This sequence is the Euler transformation of A185016. - Jason Kimberley, Oct 10 2011

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Characteristic function of multiples of g: A000007 (g=0), A000012 (g=1), A059841 (g=2), A079978 (g=3), A121262 (g=4), A079998 (g=5), this sequence (g=6), A082784 (g=7).

Programs

Formula

a(n) = a(n-6).
G.f.: 1/(1-x^6).
a(n) = floor((1/2)*cos(n*Pi/3) + 1/2). - Gary Detlefs, May 16 2011
a(n) = floor(n/6) - floor((n-1)/6). - Tani Akinari, Oct 23 2012
a(n) = (((((v^n - w^n)^2)*(2 - (-1)^n)*(w^(2*n) + w^n - 3))^2 - 144)^2)/20736, where w = (-1+i*sqrt(3))/2, v = (1+i*sqrt(3))/2. - Bogart B. Strauss, Sep 20 2013
E.g.f.: (2*cos(sqrt(3)*x/2)*cosh(x/2) + cosh(x))/3. - Vaclav Kotesovec, Feb 15 2015

Extensions

More terms from Antti Karttunen, Dec 22 2017