cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080075 Proth numbers: of the form k*2^m + 1 for k odd, m >= 1 and 2^m > k.

Original entry on oeis.org

3, 5, 9, 13, 17, 25, 33, 41, 49, 57, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241, 257, 289, 321, 353, 385, 417, 449, 481, 513, 545, 577, 609, 641, 673, 705, 737, 769, 801, 833, 865, 897, 929, 961, 993, 1025, 1089, 1153, 1217, 1281, 1345, 1409
Offset: 1

Views

Author

Eric W. Weisstein, Jan 24 2003

Keywords

Comments

A Proth number is a square iff it is of the form (2^(m-1)+-1)*2^(m+1)+1 = 4^m+-2^(m+1)+1 = (2^m+-1)^2 for m > 1. See A086341. - Thomas Ordowski, Apr 22 2019

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 1500, 2], And[OddQ[#[[1]] ], #[[-1]] >= 1, 2^#[[-1]] > #[[1]] ] &@ Append[QuotientRemainder[#1, 2^#2], #2] & @@ {#, IntegerExponent[#, 2]} &[# - 1] &] (* Michael De Vlieger, Nov 04 2019 *)
  • PARI
    is_A080075 = isproth(x)={!bittest(x--,0) && (x>>valuation(x+!x,2))^2 < x } \\ M. F. Hasler, Aug 16 2010; edited by Michel Marcus, Apr 23 2019, M. F. Hasler, Jul 07 2022
    
  • PARI
    next_A080075(N)=N+2^(exponent(N)\2+1)
    A080075_first(N)=vector(N,i,if(i>1,next_A080075(N),3)) \\ M. F. Hasler, Jul 07 2022
    
  • Python
    from itertools import count, islice
    def A080075_gen(startvalue=3): # generator of terms >= startvalue
        return filter(lambda n:(n-1&-n+1)**2+1>=n,count(max(startvalue,3)))
    A080075_list = list(islice(A080075_gen(),30)) # Chai Wah Wu, Oct 06 2024

Formula

a(n) = A116882(n+1)+1. - Klaus Brockhaus, Georgi Guninski and M. F. Hasler, Aug 16 2010
a(n) = A157892(n)*2^A157893(n) + 1. - M. F. Hasler, Aug 16 2010
a(n) ~ n^2/2. - Thomas Ordowski, Oct 19 2014
Sum_{n>=1} 1/a(n) = 1.09332245643583252894473574405304699874426408312553... (Borsos et al., 2022). - Amiram Eldar, Jan 29 2022
a(n+1) = a(n) + 2^round(L(n)/2), where L(n) is the number of binary digits of a(n); equivalently, floor(log_2(a(n))/2 + 1) in the exponent. [Lemma 2.2 in Borsos et al.] - M. F. Hasler, Jul 07 2022