cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A157892 Values of k in A080075.

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 5, 3, 7, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13
Offset: 1

Views

Author

Zak Seidov, Mar 08 2009

Keywords

Crossrefs

Cf. A157893 (Values of m in A080075).
Cf. A080075 (Proth numbers : of the form k*2^m + 1 for k odd, m >= 1 and 2^m > k).

Programs

  • Mathematica
    Select[Table[Append[QuotientRemainder[#1, 2^#2], #2] & @@ {#, IntegerExponent[#, 2]} &[n - 1], {n, 3, 3360, 2}], And[OddQ[#[[1]] ], #[[-1]] >= 1, 2^#[[-1]] > #[[1]] ] &][[All, 1]] (* Michael De Vlieger, Nov 04 2019 *)

A157893 Values of m in A080075.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 5, 3, 4, 3, 6, 4, 5, 4, 7, 4, 5, 4, 6, 4, 5, 4, 8, 5, 6, 5, 7, 5, 6, 5, 9, 5, 6, 5, 7, 5, 6, 5, 8, 5, 6, 5, 7, 5, 6, 5, 10, 6, 7, 6, 8, 6, 7, 6, 9, 6, 7, 6, 8, 6, 7, 6, 11, 6, 7, 6, 8, 6, 7, 6, 9, 6, 7, 6, 8, 6, 7, 6, 10, 6, 7, 6, 8, 6, 7, 6, 9, 6, 7, 6, 8, 6, 7, 6, 12, 7, 8, 7, 9, 7, 8, 7, 10
Offset: 1

Views

Author

Zak Seidov, Mar 08 2009

Keywords

Crossrefs

Cf. A157892 (values of k in A080075), A080075 (Proth numbers).

Programs

  • Mathematica
    Select[Table[Append[QuotientRemainder[#1, 2^#2], #2] & @@ {#, IntegerExponent[#, 2]} &[n - 1], {n, 3, 5200, 2}], And[OddQ[#[[1]] ], #[[-1]] >= 1, 2^#[[-1]] > #[[1]] ] &][[All, -1]] (* Michael De Vlieger, Nov 04 2019 *)

A130569 Numbers of the form k*2^m + 1 for k odd, m >=1, that are not Proth numbers (A080075) (2^m <= k).

Original entry on oeis.org

7, 11, 15, 19, 21, 23, 27, 29, 31, 35, 37, 39, 43, 45, 47, 51, 53, 55, 59, 61, 63, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 99, 101, 103, 105, 107, 109, 111, 115, 117, 119, 121, 123, 125, 127, 131, 133, 135, 137, 139, 141, 143, 147, 149, 151, 153, 155
Offset: 1

Views

Author

Jani Melik, Aug 10 2007

Keywords

Examples

			a(1)=7 because 7 = 3*2^1 + 1 and 2^1 <= 3,
a(2)=11 because 11 = 5*2^1 + 1 and 2^1 <= 5,
a(3)=15 because 15 = 7*2^1 + 1 and 2^1 <= 7, ...
		

Programs

  • Maple
    ts_neProth:=proc(n) local i,j,k,a,am; k := 2: am:= [ ]: for i from 1 to n do for j from 1 by 2 to n do a := j*k^(i)+1: if (k^(i) <= j) then am := [op(am), a ]: fi: od: od: RETURN( sort(am) ) end: ts_neProth(200);

A116882 A number k is included if (highest odd divisor of k)^2 <= k.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 288, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896, 928, 960, 992, 1024, 1088, 1152, 1216, 1280, 1344, 1408
Offset: 1

Views

Author

Leroy Quet, Feb 24 2006

Keywords

Comments

Also k is included if (and only if) the greatest power of 2 dividing k is >= the highest odd divisor of k. All terms of the sequence are even besides the 1.
Equivalently, positive integers of the form k*2^m, where odd k <= 2^m. - Thomas Ordowski, Oct 19 2014
If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by A161908. This sequence consists of 1 and all numbers without a superior odd divisor. - Gus Wiseman, Feb 18 2021
Numbers k such that A006519(k) >= A000265(k), with equality only when k = 1. - Amiram Eldar, Jan 24 2023

Examples

			40 = 8 * 5, where 8 is highest power of 2 dividing 40 and 5 is the highest odd dividing 40. 8 is >= 5 (so 5^2 <= 40), so 40 is in the sequence.
		

Crossrefs

The complement is A116883.
Positions of zeros (and 1) in A341675.
A051283 = numbers without a superior prime-power divisor (zeros of A341593).
A059172 = numbers without a superior squarefree divisor (zeros of A341592).
A063539 = numbers without a superior prime divisor (zeros of A341591).
A333805 counts strictly inferior odd divisors.
A341594 counts strictly superior odd divisors.
- Strictly Inferior: A056924, A060775, A070039, A333806, A341596, A341674.
Subsequence of A082662, {1} U A363122.

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], OddQ[ # ] &][[ -1]]; Insert[Select[Range[2, 1500], 2^FactorInteger[ # ][[1]][[2]] > f[ # ] &], 1, 1] (* Stefan Steinerberger, Apr 10 2006 *)
    q[n_] := 2^(2*IntegerExponent[n, 2]) >= n; Select[Range[1500], q] (* Amiram Eldar, Jan 24 2023 *)
  • PARI
    isok(n) = vecmax(select(x->((x % 2)==1), divisors(n)))^2 <= n; \\ Michel Marcus, Sep 06 2016
    
  • PARI
    isok(n) = 2^(valuation(n,2)*2) >= n \\ Jeppe Stig Nielsen, Feb 19 2019
    
  • Python
    from itertools import count, islice
    def A116882_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:(n&-n)**2>=n,count(max(startvalue,1)))
    A116882_list = list(islice(A116882_gen(),20)) # Chai Wah Wu, May 17 2023

Formula

a(n) = A080075(n-1)-1. - Klaus Brockhaus, Georgi Guninski and M. F. Hasler, Aug 16 2010
a(n) ~ n^2/2. - Thomas Ordowski, Oct 19 2014
Sum_{n>=1} 1/a(n) = 1 + (3/4) * Sum_{k>=1} H(2^k-1)/2^k = 2.3388865091..., where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jan 24 2023

Extensions

More terms from Stefan Steinerberger, Apr 10 2006

A080076 Proth primes: primes of the form k*2^m + 1 with odd k < 2^m, m >= 1.

Original entry on oeis.org

3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857, 10369, 10753, 11393, 11777, 12161, 12289, 13313
Offset: 1

Views

Author

Eric W. Weisstein, Jan 24 2003

Keywords

Comments

Named after the French farmer and self-taught mathematician François Proth (1852-1879). - Amiram Eldar, Jun 05 2021

Crossrefs

Cf. A080075.
Cf. A134876 (number of Proth primes), A214120, A239234.
Cf. A248972.

Programs

  • Maple
    N:= 20000: # to get all terms <= N
    S:= select(isprime, {seq(seq(k*2^m+1, k = 1 .. min(2^m, (N-1)/2^m), 2), m=1..ilog2(N-1))}):
    sort(convert(S,list)); # Robert Israel, Feb 02 2016
  • Mathematica
    r[p_, n_] := Reduce[p == (2*m + 1)*2^n + 1 && 2^n > 2*m + 1 && n > 0 && m >= 0, {a, m}, Integers]; r[p_] := Catch[ Do[ If[ r[p, n] =!= False, Throw[True]], {n, 1, Floor[Log[2, p]]}]]; A080076 = Reap[ Do[ p = Prime[k]; If[ r[p] === True, Sow[p]], {k, 1, 2000}]][[2, 1]] (* Jean-François Alcover, Apr 06 2012 *)
    nn = 13; Union[Flatten[Table[Select[1 + 2^n Range[1, 2^Min[n, nn - n + 1], 2], # < 2^(nn + 1) && PrimeQ[#] &], {n, nn}]]] (* T. D. Noe, Apr 06 2012 *)
  • PARI
    is_A080076(N)=isproth(N)&&isprime(N) \\ see A080075 for isproth(). - M. F. Hasler, Oct 18 2014
    next_A080076(N)={until(isprime(N=next_A080075(N)),);N}
    A080076_first(N)=vector(N,i,N=if(i>1,next_A080076(N),3)) \\ M. F. Hasler, Jul 07 2022, following a suggestion from Bill McEachen

Formula

Conjecture: a(n) ~ (n log n)^2 / 2. - Thomas Ordowski, Oct 19 2014
Sum_{n>=1} 1/a(n) is in the interval (0.7473924793, 0.7473924795) (Borsos et al., 2022). - Amiram Eldar, Jan 29 2022

A033181 Absolute Euler pseudoprimes: odd composite numbers n such that a^((n-1)/2) == +-1 (mod n) for every a coprime to n.

Original entry on oeis.org

1729, 2465, 15841, 41041, 46657, 75361, 162401, 172081, 399001, 449065, 488881, 530881, 656601, 670033, 838201, 997633, 1050985, 1615681, 1773289, 1857241, 2113921, 2433601, 2455921, 2704801, 3057601, 3224065, 3581761, 3664585, 3828001, 4463641, 4903921
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

These numbers n have the property that, for each prime divisor p, p-1 divides (n-1)/2. E.g., 2465 = 5*17*29; 1232/4 = 308; 1232/16 = 77; 1232/28 = 44. - Karsten Meyer, Nov 08 2005
All these numbers are Carmichael numbers (A002997). - Daniel Lignon, Sep 12 2015
These are odd composite numbers n such that b^((n-1)/2) == 1 (mod n) for every base b that is a quadratic residue modulo n and coprime to n. There are no odd composite numbers n such that b^((n-1)/2) == -1 (mod n) for every base b that is a quadratic non-residue modulo n and coprime to n. Note: the absolute Euler-Jacobi pseudoprimes do not exist. Theorem: if an absolute Euler pseudoprime n is a Proth number, then b^((n-1)/2) == 1 for every b coprime to n; by Proth's theorem. Such numbers are 1729, 8355841, 40280065, 53282340865, ...; for example, 1729 = 27*2^6 + 1 with 27 < 2^6. However, it seems that all absolute Euler pseudoprimes n satisfy the stronger congruence b^((n-1)/2) == 1 (mod n) for every b coprime to n, as evidenced by the modified Korselt's criterion (see the first comment). It should be noted that these are odd numbers n such that Carmichael's lambda(n) divides (n-1)/2. Also, these are odd numbers n > 1 coprime to Sum_{k=1..n-1} k^{(n-1)/2}. - Amiram Eldar and Thomas Ordowski, Apr 29 2019
Carmichael numbers k such that (p-1)|(k-1)/2 for each prime p|k. These are odd composite numbers k with half (the maximal possible fraction) of the numbers 1 <= b < k coprime to k that are bases in which k is an Euler-Jacobi pseudoprime, i.e. A329726((k-1)/2)/phi(k) = 1/2. - Amiram Eldar, Nov 20 2019
By Karsten Meyer's and Amiram Eldar's comment, this sequence is numbers k > 1 such that 2*psi(k) | (k-1), where psi = A002322. This means that if k is a term in this sequence, then we actually have a^((k-1)/2) == 1 (mod k) for every a coprime to k. - Jianing Song, Sep 03 2024

Crossrefs

Programs

  • Maple
    filter:=  proc(n)
      local q;
      if isprime(n) then return false fi;
      if 2 &^ (n-1) mod n <> 1 then return false fi;
      if not numtheory:-issqrfree(n) then return false fi;
      for q in numtheory:-factorset(n) do
        if (n-1)/2 mod (q-1) <> 0 then return false fi
      od:
      true;
    end proc:
    select(filter, [seq(i,i=3..10^7,2)]); # Robert Israel, Nov 24 2015
  • Mathematica
    absEulerpspQ[n_Integer?PrimeQ]:=False;
    absEulerpspQ[n_Integer?EvenQ]:=False;
    absEulerpspQ[n_Integer?OddQ]:=Module[{a=2},
    While[aDaniel Lignon, Sep 09 2015 *)
    aQ[n_] := Module[{f = FactorInteger[n], p},p=f[[;;,1]]; Length[p] > 1 && Max[f[[;;,2]]]==1 && AllTrue[p, Divisible[(n-1)/2, #-1] &]];Select[Range[3, 2*10^5], aQ] (* Amiram Eldar, Nov 20 2019 *)
  • Perl
    use ntheory ":all"; my $n; foroddcomposites { say if is_carmichael($) && vecall { (($n-1)>>1) % ($-1) == 0 } factor($n=$); } 1e6; # _Dana Jacobsen, Dec 27 2015

Formula

a(n) == 1 (mod 4). - Thomas Ordowski, May 02 2019

Extensions

"Absolute Euler pseudoprimes" added to name by Daniel Lignon, Sep 09 2015
Definition edited by Thomas Ordowski, Apr 29 2019

A112714 Numbers of the form k*2^m-1 with k<2^m and k odd.

Original entry on oeis.org

1, 3, 7, 11, 15, 23, 31, 39, 47, 55, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 287, 319, 351, 383, 415, 447, 479, 511, 543, 575, 607, 639, 671, 703, 735, 767, 799, 831, 863, 895, 927, 959, 991, 1023, 1087, 1151, 1215, 1279, 1343, 1407
Offset: 1

Views

Author

Jose Brox (tautocrona(AT)terra.es), Dec 31 2005

Keywords

Examples

			a(4)=7 because 7 = 1*2^3 - 1, with 1 < 2^3, and it is the fourth number of this form.
		

Crossrefs

Cf. A080075.

Programs

  • Maple
    N:= 2000: # to get all terms <= N
    sort(convert({seq(seq(k*2^m-1,k=1..min((N+1)/2^m,2^m-1),2),m=1..ilog2(N+1))},list)); # Robert Israel, May 23 2017
  • Mathematica
    Take[Sort@Flatten@Table[k*2^m - 1, {m, 0, 10}, {k, 1, 2^m - 1, 2}], 53] (* Robert G. Wilson v, Jan 02 2006 *)
  • PARI
    for(n=2,8,for(k=2^(n-2)+1,2^n,print1(k*2^n-1","))) \\ Note that the first two terms (1,3) are not computed

Formula

a(n) = A080075(n)-2. - Thomas Ordowski, Aug 15 2025

A369901 Proth numbers h*2^k+1, with odd h < 2^k, ordered first by k then by h.

Original entry on oeis.org

3, 5, 13, 9, 25, 41, 57, 17, 49, 81, 113, 145, 177, 209, 241, 33, 97, 161, 225, 289, 353, 417, 481, 545, 609, 673, 737, 801, 865, 929, 993, 65, 193, 321, 449, 577, 705, 833, 961, 1089, 1217, 1345, 1473, 1601, 1729, 1857, 1985, 2113, 2241, 2369, 2497, 2625, 2753, 2881
Offset: 1

Views

Author

Daniel Sturm, Feb 05 2024

Keywords

Examples

			Displayed as an irregular triangle:
  3;
  5, 13;
  9, 25, 41, 57;
  17, 49, 81, 113, 145, 177, 209, 241;
  ...
		

Crossrefs

Cf. A080075 (Proth numbers).
Cf. A000051 (1st column), A020515 (right diagonal).

Programs

  • PARI
    \\ See PARI link
  • Python
    def A369901(n):
        b = n.bit_length() - 1
        c = n - 2**b
        return (2*c+1)*2**(b+1)+1
    

Formula

a(2^b+c) = (2c+1)*2^(b+1)+1 for 0 <= c < 2^b. [Corrected by Thomas Ordowski, Aug 11 2025]
a(n) = (2n+1-2^m)*2^m+1 = (2n+1)*2^m-4^m+1, where m = floor(log_2(2n+1)). - Thomas Ordowski, Aug 11 2025

Extensions

More terms from David A. Corneth, Feb 05 2024

A030239 a(n) is the smallest number k such that k*2^(2^n) + 1 is prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 18, 12, 21, 102, 202, 826, 708, 502, 1522, 6223, 3493, 1063, 50655, 10051, 328426
Offset: 0

Views

Author

Alar Leibak (aleibak(AT)cyber.ee)

Keywords

Comments

The primality test for Proth numbers can be used. - Thomas Ordowski, Apr 13 2019

Crossrefs

Programs

  • PARI
    isok(k, n) = isprime(k*2^(2^n) + 1);
    a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Apr 15 2019

Formula

a(n) = min{a : a > 0 and (a*2^2^n)! == -1 (mod a*2^2^n+1)}.

Extensions

a(11)-a(17) from Donovan Johnson, Mar 26 2010
a(18)-a(19) from Donovan Johnson, Jan 14 2012
Name edited by Thomas Ordowski, Apr 13 2019

A242880 Numbers that are both Poulet and Proth.

Original entry on oeis.org

1729, 4033, 8321, 12801, 65281, 130561, 348161, 3225601, 8355841, 8384513, 16773121, 40280065, 104988673, 2147418113, 4294901761, 4294967297, 53282340865, 68719214593, 137439477761, 1099510579201, 1911029760001, 2199021158401, 8796097216513, 281474959933441, 9007199388958721, 576460753377165313, 2305843011361177601, 18446744073709551617
Offset: 1

Views

Author

Lear Young, May 25 2014

Keywords

Comments

Intersection of A080075 and A001567.
a(1) = 1729 is known as the Hardy-Ramanujan number (see A001235). - Omar E. Pol, Jun 14 2014

Crossrefs

Cf. A080075 (Proth numbers), A001567 (Poulet numbers).

Extensions

a(20)-a(28) from Max Alekseyev, May 28 2014
Showing 1-10 of 13 results. Next