cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A112715 Primes in A112714.

Original entry on oeis.org

3, 7, 11, 23, 31, 47, 79, 127, 191, 223, 239, 383, 479, 607, 863, 991, 1087, 1151, 1279, 1471, 1663, 2111, 2239, 2687, 2879, 3391, 3583, 3967, 5119, 5503, 6143, 6271, 6911, 7039, 8191, 8447, 8831, 9343, 10111, 11519, 11903, 12671, 12799, 13183, 13567
Offset: 1

Views

Author

Jose Brox (tautocrona(AT)terra.es), Dec 31 2005

Keywords

Examples

			a(1)=3 because 3=1*2^2-1 and it is the first prime of this form.
		

Crossrefs

Cf. A080076.

Programs

  • Maple
    N:= 10^6: # to get all terms <= N
    sort(convert(select(isprime,{seq(seq(k*2^m-1,k=1..min((N+1)/2^m,2^m-1),2),m=1..ilog2(N+1))}),list)); # Robert Israel, May 23 2017
  • Mathematica
    Take[Sort@ Select[Flatten@ Table[k 2^m - 1, {m, 0, 15}, {k, 1, 2^m - 1, 2}], PrimeQ], 45] (* Michael De Vlieger, May 23 2017, after Robert G. Wilson v at A112714 *)
  • PARI
    for(n=2,8,for(k=2^(n-2)+1,2^n,M=k*2^n-1;if(isprime(M),print1(M","),0)))

A116882 A number k is included if (highest odd divisor of k)^2 <= k.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 288, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896, 928, 960, 992, 1024, 1088, 1152, 1216, 1280, 1344, 1408
Offset: 1

Views

Author

Leroy Quet, Feb 24 2006

Keywords

Comments

Also k is included if (and only if) the greatest power of 2 dividing k is >= the highest odd divisor of k. All terms of the sequence are even besides the 1.
Equivalently, positive integers of the form k*2^m, where odd k <= 2^m. - Thomas Ordowski, Oct 19 2014
If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by A161908. This sequence consists of 1 and all numbers without a superior odd divisor. - Gus Wiseman, Feb 18 2021
Numbers k such that A006519(k) >= A000265(k), with equality only when k = 1. - Amiram Eldar, Jan 24 2023

Examples

			40 = 8 * 5, where 8 is highest power of 2 dividing 40 and 5 is the highest odd dividing 40. 8 is >= 5 (so 5^2 <= 40), so 40 is in the sequence.
		

Crossrefs

The complement is A116883.
Positions of zeros (and 1) in A341675.
A051283 = numbers without a superior prime-power divisor (zeros of A341593).
A059172 = numbers without a superior squarefree divisor (zeros of A341592).
A063539 = numbers without a superior prime divisor (zeros of A341591).
A333805 counts strictly inferior odd divisors.
A341594 counts strictly superior odd divisors.
- Strictly Inferior: A056924, A060775, A070039, A333806, A341596, A341674.
Subsequence of A082662, {1} U A363122.

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], OddQ[ # ] &][[ -1]]; Insert[Select[Range[2, 1500], 2^FactorInteger[ # ][[1]][[2]] > f[ # ] &], 1, 1] (* Stefan Steinerberger, Apr 10 2006 *)
    q[n_] := 2^(2*IntegerExponent[n, 2]) >= n; Select[Range[1500], q] (* Amiram Eldar, Jan 24 2023 *)
  • PARI
    isok(n) = vecmax(select(x->((x % 2)==1), divisors(n)))^2 <= n; \\ Michel Marcus, Sep 06 2016
    
  • PARI
    isok(n) = 2^(valuation(n,2)*2) >= n \\ Jeppe Stig Nielsen, Feb 19 2019
    
  • Python
    from itertools import count, islice
    def A116882_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:(n&-n)**2>=n,count(max(startvalue,1)))
    A116882_list = list(islice(A116882_gen(),20)) # Chai Wah Wu, May 17 2023

Formula

a(n) = A080075(n-1)-1. - Klaus Brockhaus, Georgi Guninski and M. F. Hasler, Aug 16 2010
a(n) ~ n^2/2. - Thomas Ordowski, Oct 19 2014
Sum_{n>=1} 1/a(n) = 1 + (3/4) * Sum_{k>=1} H(2^k-1)/2^k = 2.3388865091..., where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jan 24 2023

Extensions

More terms from Stefan Steinerberger, Apr 10 2006

A080075 Proth numbers: of the form k*2^m + 1 for k odd, m >= 1 and 2^m > k.

Original entry on oeis.org

3, 5, 9, 13, 17, 25, 33, 41, 49, 57, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241, 257, 289, 321, 353, 385, 417, 449, 481, 513, 545, 577, 609, 641, 673, 705, 737, 769, 801, 833, 865, 897, 929, 961, 993, 1025, 1089, 1153, 1217, 1281, 1345, 1409
Offset: 1

Views

Author

Eric W. Weisstein, Jan 24 2003

Keywords

Comments

A Proth number is a square iff it is of the form (2^(m-1)+-1)*2^(m+1)+1 = 4^m+-2^(m+1)+1 = (2^m+-1)^2 for m > 1. See A086341. - Thomas Ordowski, Apr 22 2019

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 1500, 2], And[OddQ[#[[1]] ], #[[-1]] >= 1, 2^#[[-1]] > #[[1]] ] &@ Append[QuotientRemainder[#1, 2^#2], #2] & @@ {#, IntegerExponent[#, 2]} &[# - 1] &] (* Michael De Vlieger, Nov 04 2019 *)
  • PARI
    is_A080075 = isproth(x)={!bittest(x--,0) && (x>>valuation(x+!x,2))^2 < x } \\ M. F. Hasler, Aug 16 2010; edited by Michel Marcus, Apr 23 2019, M. F. Hasler, Jul 07 2022
    
  • PARI
    next_A080075(N)=N+2^(exponent(N)\2+1)
    A080075_first(N)=vector(N,i,if(i>1,next_A080075(N),3)) \\ M. F. Hasler, Jul 07 2022
    
  • Python
    from itertools import count, islice
    def A080075_gen(startvalue=3): # generator of terms >= startvalue
        return filter(lambda n:(n-1&-n+1)**2+1>=n,count(max(startvalue,3)))
    A080075_list = list(islice(A080075_gen(),30)) # Chai Wah Wu, Oct 06 2024

Formula

a(n) = A116882(n+1)+1. - Klaus Brockhaus, Georgi Guninski and M. F. Hasler, Aug 16 2010
a(n) = A157892(n)*2^A157893(n) + 1. - M. F. Hasler, Aug 16 2010
a(n) ~ n^2/2. - Thomas Ordowski, Oct 19 2014
Sum_{n>=1} 1/a(n) = 1.09332245643583252894473574405304699874426408312553... (Borsos et al., 2022). - Amiram Eldar, Jan 29 2022
a(n+1) = a(n) + 2^round(L(n)/2), where L(n) is the number of binary digits of a(n); equivalently, floor(log_2(a(n))/2 + 1) in the exponent. [Lemma 2.2 in Borsos et al.] - M. F. Hasler, Jul 07 2022

A332011 Let k be the least positive number such that n AND floor(n/k) = 0 (where AND denotes the bitwise AND operator); a(n) = floor(n/k).

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 1, 0, 4, 4, 5, 0, 3, 2, 1, 0, 8, 8, 9, 4, 10, 10, 1, 0, 6, 6, 5, 4, 3, 2, 1, 0, 16, 16, 17, 8, 18, 18, 9, 0, 20, 20, 21, 4, 3, 2, 1, 0, 12, 12, 12, 12, 10, 10, 9, 0, 7, 6, 5, 4, 3, 2, 1, 0, 32, 32, 33, 16, 34, 34, 17, 8, 36, 36, 37, 4, 19, 2
Offset: 0

Views

Author

Rémy Sigrist, Feb 04 2020

Keywords

Examples

			For n = 3:
- 3 AND floor(3/1) = 3,
- 3 AND floor(3/2) = 1,
- 3 AND floor(3/3) = 1,
- 3 AND floor(3/4) = 0,
- hence a(3) = floor(3/4) = 0.
		

Crossrefs

Programs

  • PARI
    a(n) = for (k=1, oo, if (bitand(n, n\k)==0, return (n\k)))

Formula

a(n) = floor(n/A331985(n)).
Apparently, a(n) = 0 iff n = 0 or n belongs to A112714.

A112717 9-digit numbers n such that phi(n) = d_1 d_2 d_3*d_4 d_5 d_6* d_7 d_8 d_9 where d_1 d_2 ... d_9 is the decimal expansion of n.

Original entry on oeis.org

102873384, 104754444, 104840625, 104963320, 106600792, 108512770, 108860625, 108864585, 110640784, 110756648, 116660400, 116672500, 117480648, 120297912, 120876448, 120916400, 121864290, 124704384, 125792500, 126528640, 128333700
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 16 2005

Keywords

Examples

			phi(128972250)=128*972*250, so 128972250 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Do[h=IntegerDigits[n]; k=Length[h]; If[EulerPhi[n]==Product[ 100*h[[3j-2]]+10h[[3j-1]]+h[[3j]], {j, k/3}], Print[n]], {n, 10^8, 128400000}]
Showing 1-5 of 5 results.