cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A080212 Binomial(n, smallest odd prime factor of n).

Original entry on oeis.org

1, 2, 1, 4, 1, 20, 1, 8, 84, 252, 1, 220, 1, 3432, 455, 16, 1, 816, 1, 15504, 1330, 705432, 1, 2024, 53130, 10400600, 2925, 1184040, 1, 4060, 1, 32, 5456, 2333606220, 324632, 7140, 1, 35345263800, 9139, 658008, 1, 11480, 1, 7669339132, 14190
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 06 2003

Keywords

Comments

For n>1: a(n)=1 iff n is prime.

Crossrefs

A080213 a(n) = binomial(n, greatest prime factor of n).

Original entry on oeis.org

1, 1, 1, 6, 1, 20, 1, 28, 84, 252, 1, 220, 1, 3432, 3003, 120, 1, 816, 1, 15504, 116280, 705432, 1, 2024, 53130, 10400600, 2925, 1184040, 1, 142506, 1, 496, 193536720, 2333606220, 6724520, 7140, 1, 35345263800, 8122425444, 658008, 1, 26978328, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 06 2003

Keywords

Comments

For n>1: a(n)=1 iff n is prime.

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n,FactorInteger[n][[-1,1]]],{n,50}] (* Harvey P. Dale, Feb 25 2015 *)
  • PARI
    a(n) = if (n==1, 1, binomial(n, vecmax(factor(n)[,1]))); \\ Michel Marcus, May 06 2020
    
  • Sage
    def a(n):
        if n==1: return 1
        return binomial(n, factor(n)[-1][0])  # Robin Visser, Nov 25 2023

Formula

a(n) = binomial(n, A006530(n)). - Michel Marcus, May 06 2020

A080214 Binomial(greatest prime factor of n, smallest prime factor of n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 10, 1, 3, 1, 21, 10, 1, 1, 3, 1, 10, 35, 55, 1, 3, 1, 78, 1, 21, 1, 10, 1, 1, 165, 136, 21, 3, 1, 171, 286, 10, 1, 21, 1, 55, 10, 253, 1, 3, 1, 10, 680, 78, 1, 3, 462, 21, 969, 406, 1, 10, 1, 465, 35, 1, 1287, 55, 1, 136, 1771, 21, 1, 3, 1, 666, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 06 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := With[{f = FactorInteger[n]}, Binomial[f[[-1, 1]], f[[1, 1]]]];
    Array[a, 100] (* Jean-François Alcover, Dec 02 2021 *)
  • PARI
    A080214(n) = if(1==n,n,my(f = factor(n), lpf = f[1, 1], gpf = f[#f~, 1]); binomial(gpf,lpf)); \\ Antti Karttunen, Sep 06 2018

A180733 Largest element of n-th row of Pascal's triangle that is not a multiple of n.

Original entry on oeis.org

1, 1, 6, 1, 20, 1, 70, 84, 252, 1, 495, 1, 3432, 5005, 12870, 1, 48620, 1, 184756, 293930, 705432, 1, 2704156, 3268760, 10400600, 17383860, 40116600, 1, 145422675, 1, 601080390, 193536720, 2333606220, 2319959400, 9075135300, 1
Offset: 2

Views

Author

Alonso del Arte, Jan 21 2011

Keywords

Comments

If n is prime, then a(n) = 1, because all other elements of the n-th row of Pascal's triangle are multiples of that prime.
If n is composite, then the inequality 1 < gcd(n, a(n)) < n holds; in other words, n and a(n) are not coprime, but n does not divide a(n) evenly.
a(n) does not always equal binomial(n, gpf(n)), where gpf(n) is the greatest prime factor function. For example, in the twelfth row of Pascal's triangle, binomial(12, 3) = 220, but binomial(12, 4) = 495.

Examples

			a(4) = 6 because in the fourth row of Pascal's triangle, 1 and 6 are not multiples of 4, and 6 is the largest of those.
a(5) = 1 because in the fifth row all the other terms are multiples of 5.
		

References

  • Vladimir Andreevich Uspenskii, Pascal's Triangle. Translated and adapted from the Russian by David J. Sookne and Timothy McLarnan. University of Chicago Press, 1974, p. 11.

Crossrefs

Cf. A007318, A080211 Binomial(n, smallest prime factor of n).

Programs

  • Maple
    a:= proc(n) local mx, t, i, r;
          mx:=1;
          t:=n;
          for i from 2 to floor(n/2) do
            t:= t* (n-i+1)/i;
            if irem(t,n)>0 and t>mx then mx:=t fi
          od; mx
        end;
    seq(a(n), n=2..100); # Alois P. Heinz, Jan 22 2011
  • Mathematica
    Table[Max[Select[Table[Binomial[n, m], {m, 0, n}], GCD[#, n] < n &]], {n, 2, 30}]
Showing 1-4 of 4 results.