cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A166141 Triangle T(n,k) read by rows. A080304(A126988).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 6, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 10, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Mats Granvik, Oct 08 2009

Keywords

Examples

			Table begins:
1
1,1
1,0,1
1,1,0,1
1,0,0,0,1
6,1,1,0,0,1
1,0,0,0,0,0,1
1,1,0,1,0,0,0,1
1,0,1,0,0,0,0,0,1
10,1,0,0,1,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0,1
1,6,1,1,0,1,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0,0,0,1
		

Crossrefs

Cf. A080304, row products A166142.

A080305 Denominator of n^mu(n), where mu is the Moebius function (A008683).

Original entry on oeis.org

1, 2, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 17, 1, 19, 1, 1, 1, 23, 1, 1, 1, 1, 1, 29, 30, 31, 1, 1, 1, 1, 1, 37, 1, 1, 1, 41, 42, 43, 1, 1, 1, 47, 1, 1, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 1, 1, 66, 67, 1, 1, 70, 71, 1, 73, 1, 1, 1, 1, 78, 79, 1, 1, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 13 2003

Keywords

Crossrefs

Cf. A008683.
Numerator: A080304, A080306, A034386.

Programs

Formula

a(n) = if mu(n)<0 then n else 1, where mu is Moebius mu function (A008683).

A080326 Denominator of Sum(k^mu(k): 1<=k<=n), where mu is the Moebius function (A008683).

Original entry on oeis.org

1, 2, 6, 6, 30, 30, 210, 210, 210, 210, 2310, 2310, 30030, 30030, 30030, 30030, 510510, 510510, 9699690, 9699690, 9699690, 9699690, 223092870, 223092870, 223092870, 223092870, 223092870, 223092870, 6469693230, 3234846615
Offset: 1

Views

Author

Dean Hickerson, Feb 15 2003

Keywords

Comments

a(n) is a divisor of A034386(n), the product of the primes <= n. Does a(n) = A034386(n) for infinitely many n?

Crossrefs

Numerators are in A080306. Cf. A080304, A080305, A034386.

Programs

  • Mathematica
    Accumulate[Table[n^MoebiusMu[n],{n,30}]]//Denominator (* Harvey P. Dale, Jul 28 2021 *)
  • PARI
    a(n) = denominator(sum(k = 1, n, k^moebius(k))); \\ Michel Marcus, Aug 29 2013

A080306 Numerator of Sum(k^mu(k): 1<=k<=n), where mu is the Moebius function (A008683).

Original entry on oeis.org

1, 3, 11, 17, 91, 271, 1927, 2137, 2347, 4447, 49127, 51437, 670991, 1091411, 1541861, 1571891, 26752177, 27262687, 518501563, 528201253, 731894743, 945287923, 21751321919, 21974414789, 22197507659, 27997922279, 28221015149
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 13 2003

Keywords

Examples

			a(6) = 1^mu(1)+2^mu(2)+3^mu(3)+4^mu(4)+5^mu(5)+6^mu(6) = 1^1+2^(-1)+3^(-1)+4^0+5^(-1)+6^1 = 1 + 1/2 + 1/3 + 1 + 1/5 + 6 = (30+15+10+30+6+180)/30 = 271/30, therefore a(6)=271, A080326(6)=30.
		

Crossrefs

Denominators are in A080326. Cf. A080304, A080305.

Programs

  • Mathematica
    Accumulate[Table[n^MoebiusMu[n],{n,30}]]//Numerator (* Harvey P. Dale, Nov 13 2021 *)
  • PARI
    a(n) = numerator(sum(k = 1, n, k^moebius(k))); \\ Michel Marcus, Aug 29 2013

A166142 Row products of A166141; Product of such divisors of n that are squarefree and have an even number of prime factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 6, 1, 14, 15, 1, 1, 6, 1, 10, 21, 22, 1, 6, 1, 26, 1, 14, 1, 900, 1, 1, 33, 34, 35, 6, 1, 38, 39, 10, 1, 1764, 1, 22, 15, 46, 1, 6, 1, 10, 51, 26, 1, 6, 55, 14, 57, 58, 1, 900, 1, 62, 21, 1, 65, 4356, 1, 34, 69, 4900, 1, 6, 1, 74, 15, 38, 77, 6084, 1, 10
Offset: 1

Views

Author

Mats Granvik, Oct 08 2009

Keywords

Examples

			For n = 30 = 2*3*5, all its divisors [1, 2, 3, 5, 6, 10, 15, 30] are squarefree, but only 1, 6, 10 and 15 have an even number of prime factors, thus a(30) = 1*6*10*15 = 900. - _Antti Karttunen_, Aug 06 2018
		

Crossrefs

Programs

  • PARI
    A166142(n) = { my(m=1); fordiv(n,d,m *= if(moebius(d) > 0,d,1)); (m); }; \\ Antti Karttunen, Aug 06 2018

Formula

a(n) = Product_{d|n} A080304(d). - Antti Karttunen, Aug 06 2018

Extensions

Alternative definition added to the name by Antti Karttunen, Aug 06 2018
Showing 1-5 of 5 results.