cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A080304 Numerator of n^mu(n), where mu is the Moebius function (A008683).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 1, 1, 14, 15, 1, 1, 1, 1, 1, 21, 22, 1, 1, 1, 26, 1, 1, 1, 1, 1, 1, 33, 34, 35, 1, 1, 38, 39, 1, 1, 1, 1, 1, 1, 46, 1, 1, 1, 1, 51, 1, 1, 1, 55, 1, 57, 58, 1, 1, 1, 62, 1, 1, 65, 1, 1, 1, 69, 1, 1, 1, 1, 74, 1, 1, 77, 1, 1, 1, 1, 82, 1, 1, 85, 86, 87, 1, 1, 1, 91, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 13 2003

Keywords

Crossrefs

Denominator: A080305. Cf. A080306, A080326, A166142.

Programs

Formula

a(n) = if mu(n)>0 then n else 1.

A080306 Numerator of Sum(k^mu(k): 1<=k<=n), where mu is the Moebius function (A008683).

Original entry on oeis.org

1, 3, 11, 17, 91, 271, 1927, 2137, 2347, 4447, 49127, 51437, 670991, 1091411, 1541861, 1571891, 26752177, 27262687, 518501563, 528201253, 731894743, 945287923, 21751321919, 21974414789, 22197507659, 27997922279, 28221015149
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 13 2003

Keywords

Examples

			a(6) = 1^mu(1)+2^mu(2)+3^mu(3)+4^mu(4)+5^mu(5)+6^mu(6) = 1^1+2^(-1)+3^(-1)+4^0+5^(-1)+6^1 = 1 + 1/2 + 1/3 + 1 + 1/5 + 6 = (30+15+10+30+6+180)/30 = 271/30, therefore a(6)=271, A080326(6)=30.
		

Crossrefs

Denominators are in A080326. Cf. A080304, A080305.

Programs

  • Mathematica
    Accumulate[Table[n^MoebiusMu[n],{n,30}]]//Numerator (* Harvey P. Dale, Nov 13 2021 *)
  • PARI
    a(n) = numerator(sum(k = 1, n, k^moebius(k))); \\ Michel Marcus, Aug 29 2013

A130492 a(n) = denominator of Sum_{k=1..n} k^mu(n+1-k), where mu(m) = A008683(m).

Original entry on oeis.org

1, 1, 2, 6, 12, 20, 10, 84, 840, 72, 630, 1320, 2772, 1560, 90090, 42, 240240, 1904, 46410, 95760, 639540, 5040, 9699690, 637560, 14316120, 92400, 176125950, 308880, 20078358300, 475020, 33845175, 7447440, 116925953760, 110880, 501401225325, 2227680, 244906200
Offset: 1

Views

Author

Leroy Quet, May 29 2007

Keywords

Comments

Numerator of Sum_{k=1..n} k^mu(n+1-k) is A130491(n).

Crossrefs

Programs

  • Maple
    A130492 := proc(n) denom(add(k^numtheory[mobius](n+1-k),k=1..n)) ; end: seq(A130492(n),n=1..40) ; # R. J. Mathar, Oct 16 2007
  • Mathematica
    Table[Denominator[Sum[k^MoebiusMu[n+1-k], {k, n}]], {n, 37}] (* James C. McMahon, Feb 09 2025 *)

Extensions

More terms from R. J. Mathar, Oct 16 2007
a(36)-a(37) from James C. McMahon, Feb 09 2025

A130491 a(n) = numerator of Sum_{k=1..n} k^mu(n+1-k), where mu(m) = A008683(m).

Original entry on oeis.org

1, 3, 9, 35, 91, 179, 117, 1181, 14113, 1415, 14839, 35617, 85271, 53251, 3503033, 1879, 12165719, 106753, 2870239, 6436711, 46663061, 402271, 850810423, 60658043, 1473361913, 10236631, 21081760033, 39731443, 2762347887557
Offset: 1

Views

Author

Leroy Quet, May 29 2007

Keywords

Comments

Denominator of Sum_{k=1..n} k^mu(n+1-k) is A130492(n).

Crossrefs

Programs

  • Maple
    A130491 := proc(n) numer(add(k^numtheory[mobius](n+1-k),k=1..n)) ; end: seq(A130491(n),n=1..40) ; # R. J. Mathar, Oct 16 2007
  • Mathematica
    Table[Numerator[Sum[k^MoebiusMu[n+1-k],{k,n}]],{n,29}] (* James C. McMahon, Feb 09 2025 *)
  • PARI
    a(n) = numerator(sum(k=1, n, k^moebius(n+1-k))); \\ Michel Marcus, Feb 09 2025

Extensions

More terms from R. J. Mathar, Oct 16 2007

A182397 Numerators in triangle that leads to the (first) Bernoulli numbers A027641/A027642.

Original entry on oeis.org

1, 1, -3, 1, -5, 5, 1, -7, 25, -5, 1, -9, 23, -35, 49, 1, -11, 73, -27, 112, -49, 1, -13, 53, -77, 629, -91, 58, 1, -15, 145, -130, 1399, -451, 753, -58, 1, -17, 95, -135, 2699, -2301, 8573, -869, 341, 1, -19, 241
Offset: 0

Views

Author

Paul Curtz, Apr 27 2012

Keywords

Comments

In A190339 we saw that (the second Bernoulli numbers) A164555/A027642 is an eigensequence (its inverse binomial transform is the sequence signed) of the second kind, see A192456/A191302. We consider this array preceded by 1 for the second row, by 1, -3/2, for the third one; 1 is chosen and is followed by the differences of successive rows.
Hence
1 1/2 1/6 0
1 -1/2 -1/3 -1/6 -1/30
1 -3/2 1/6 1/6 2/15 1/15
1 -5/2 5/3 0 -1/30 -1/15 -8/105.
The second row is A051716/A051717.
The (reduced) triangle before the square array (T(n,m) in A190339) is a(n)/b(n)=
B(0)= 1 = 1 Redbernou1li
B(1)= -1/2 = 1 -3/2
B(2)= 1/6 = 1 -5/2 5/3
B(3)= 0 = 1 -7/2 25/6 -5/3
B(4)=-1/30 = 1 -9/2 23/3 -35/6 49/30
B(5)= 0 = 1 -11/2 73/6 -27/2 112/15 -49/30.
For the main diagonal, see A165142.
Denominator b(n) will be submitted.
This transform is valuable for every eigensequence of the second kind. For instance Leibniz's 1/n (A003506).
With increasing exponents for coefficients, polynomials CB(n,x) create Redbernou1li. See the formula.
Triangle Bernou1li for A027641/A027642 with the same denominator A080326 for every column is
1
1 -3/2
1 -5/2 10/6
1 -7/2 25/6 -10/6
1 -9/2 46/6 -35/6 49/30
1 -11/2 73/6 -81/6 224/30 -49/30.
For numerator by columns,see A000012, -A144396, A100536, Q(n)=n*(2*n^2+9*n+9)/2 , new.
Triangle Checkbernou1 with the same denominator A080326 for every row is
1/1
(2 -3)/2
(6 -15 +10)/6
(6 -21 +25 -10)/6
(30 -135 +230 -175 +49)/30
(30 -165 +365 -405 +224 -49)/30;
Hence for numerator: 1, 2-3, 16-15, 31-31, 309-310, 619-619, 8171-8166.
Absolute sum: 1, 5, 31, 62, 619, 1238, 17337. Reduced division by A080326:
1, 5/2, 31/6, 31/3, 619/30, 619/15, 5779/70, = A172030(n+1)/A172031(n+1).

Crossrefs

Cf. A028246 (Worpitzky), A085737/A085738 (Conway-Sloane), A051714/A051715 (Akiyama-Tanigawa), A192456/A191302 for other triangles that lead to the Bernoulli numbers.

Formula

CB(0,x) = 1,
CB(1,x) = 1 - 3*x/2,
CB(n,x) = (1-x)*CB(n-1,x) + B(n)*x^n , n > 1.
Showing 1-5 of 5 results.