cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A166139 Triangle T(n,k) read by rows. A080305(A126988(n,k)) if k|n, 0 otherwise.

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 1, 2, 0, 1, 5, 0, 0, 0, 1, 1, 3, 2, 0, 0, 1, 7, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0, 1, 1, 0, 3, 0, 0, 0, 0, 0, 1, 1, 5, 0, 0, 2, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 0, 2, 0, 0, 0, 0, 0, 1, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Mats Granvik, Oct 08 2009

Keywords

Examples

			Table begins:
1
2,1
3,0,1
1,2,0,1
5,0,0,0,1
1,3,2,0,0,1
7,0,0,0,0,0,1
1,1,0,2,0,0,0,1
1,0,3,0,0,0,0,0,1
1,5,0,0,2,0,0,0,0,1
11,0,0,0,0,0,0,0,0,0,1
1,1,1,3,0,2,0,0,0,0,0,1
13,0,0,0,0,0,0,0,0,0,0,0,1
		

Crossrefs

Cf. A080305, row products A166140.

A089026 a(n) = n if n is a prime, otherwise a(n) = 1.

Original entry on oeis.org

1, 2, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 17, 1, 19, 1, 1, 1, 23, 1, 1, 1, 1, 1, 29, 1, 31, 1, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 1, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 1, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 1, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Roger L. Bagula, Nov 12 2003

Keywords

Comments

This sequence was the subject of the 1st problem of the 9th Irish Mathematical Olympiad 1996 with gcd((n + 1)!, n! + 1) = a(n+1) for n >= 0 (see formula Jan 23 2009 and link). - Bernard Schott, Jul 22 2020
For sequence A with terms a(1), a(2), a(3),... , let R(0) = 1 and for k >= 1 let R(k) = rad(a(1)*a(2)*...*a(k)). Define the Rad-transform of A to be R(n)/R(n-1); n >= 1, where rad is A007947. Then this sequence is the Rad transform of the positive integers, A = A000027. - David James Sycamore, Apr 19 2024

Examples

			From Larry Tesler (tesler(AT)pobox.com), Nov 08 2010: (Start)
a(9) = (8*9*10)/(2^((5+2+1)-(3+1+0))*3^((3+1)-(2+0))*5^((2)-(1))*7^((1)-(1))) = 1 [composite].
a(10) = (8*9*10)/(2^((5+2+1)-(3+1+0))*3^((3+1)-(2+0))*5^((2)-(1))*7^((1)-(1))) = 1 [composite].
a(11) = (8*9*10*11*12)/(2^((6+3+1)-(3+1+0))*3^((4+1)-(2+0))*5^((2)-(1))*7^((1)-(1))) = 11 [prime]. (End)
		

References

  • Paulo Ribenboim, The little book of big primes, Springer 1991, p. 106.
  • L. Tesler, "Factorials and Primes", Math. Bulletin of the Bronx H.S. of Science (1961), 5-10. [From Larry Tesler (tesler(AT)pobox.com), Nov 08 2010]

Crossrefs

Differs from A080305 at n=30.

Programs

  • MATLAB
    a = [1:96]; a(isprime(a) == false) = 1; % Thomas Scheuerle, Oct 06 2022
    
  • Magma
    [IsPrime(n) select n else 1: n in [1..96]]; // Marius A. Burtea, Aug 02 2019
    
  • Mathematica
    digits=200; a=Table[If[PrimePi[n]-PrimePi[n-1]>0, n, 1], {n, 1, digits}]; Table[Numerator[(n/2)/(n-1)! ] + Floor[2/n] - 2*Floor[1/n], {n,1,200}] (* Alexander Adamchuk, May 20 2006 *)
    Range@ 120 /. k_ /; CompositeQ@ k -> 1 (* or *)
    Table[n Boole@ PrimeQ@ n, {n, 120}] /. 0 -> 1 (* or *)
    Table[If[PrimeQ@ n, n, 1], {n, 120}] (* Michael De Vlieger, Jul 02 2016 *)
  • PARI
    a(n) = n^isprime(n) \\ David A. Corneth, Oct 06 2022
  • Python
    from sympy import isprime
    def a(n): return n if isprime(n) else 1
    print([a(n) for n in range(1, 97)]) # Michael S. Branicky, Oct 06 2022
    
  • Sage
    def A089026(n):
        if n == 4: return 1
        f = factorial(n-1)
        return (f + 1) - n*(f//n)
    [A089026(n) for n in (1..96)]   # Peter Luschny, Oct 16 2013
    

Formula

From Peter Luschny, Nov 29 2003: (Start)
a(n) = denominator(n! * Sum_{m=0..n} (-1)^m*m!*Stirling2(n+1, m+1)/(m+1)).
a(n) = denominator(n! * Sum_{m=0..n} (-1)^m*m!*Stirling2(n, m)/(m+1)). (End)
From Alexander Adamchuk, May 20 2006: (Start)
a(n) = numerator((n/2)/(n-1)!) + floor(2/n) - 2*floor(1/n).
a(n) = A090585(n-1) = A000217(n-1)/A069268(n-1) for n>2. (End)
a(n) = gcd(n,(n-1)!+1). - Jaume Oliver Lafont, Jul 17 2008, Jan 23 2009
a(1) = 1, a(2) = 2, then a(n) = 1 or a(n) = n = prime(m) = (Product q+k, k = 1 .. 2*floor(n/2+1)-q) / (Product prime(i)^(Sum (floor((n+1)/(prime(i)^w)) - floor(q/(prime(i)^w)) ), w = 1 .. floor(log[base prime(i)] n+1) ), i = 2 .. m-1) where q = prime(m-1). - Larry Tesler (tesler(AT)pobox.com), Nov 08 2010
a(n) = (n!*HarmonicNumber(n) mod n)+1, n != 4. - Gary Detlefs, Dec 03 2011
a(n) = denominator of (n!)/n^(3/2). - Arkadiusz Wesolowski, Dec 04 2011
a(n) = A034386(n+1)/A034386(n). - Eric Desbiaux, May 10 2013
a(n) = n^c(n), where c = A010051. - Wesley Ivan Hurt, Jun 16 2013
a(n) = A014963(n)^(-A008683(n)). - Mats Granvik, Jul 02 2016
Conjecture: for n > 3, a(n) = gcd(n, A007406(n-1)). - Thomas Ordowski, Aug 02 2019
a(n) = 1 + c(n)*(n-1), where c = A010051. - Wesley Ivan Hurt, Jun 21 2025

A080304 Numerator of n^mu(n), where mu is the Moebius function (A008683).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 1, 1, 14, 15, 1, 1, 1, 1, 1, 21, 22, 1, 1, 1, 26, 1, 1, 1, 1, 1, 1, 33, 34, 35, 1, 1, 38, 39, 1, 1, 1, 1, 1, 1, 46, 1, 1, 1, 1, 51, 1, 1, 1, 55, 1, 57, 58, 1, 1, 1, 62, 1, 1, 65, 1, 1, 1, 69, 1, 1, 1, 1, 74, 1, 1, 77, 1, 1, 1, 1, 82, 1, 1, 85, 86, 87, 1, 1, 1, 91, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 13 2003

Keywords

Crossrefs

Denominator: A080305. Cf. A080306, A080326, A166142.

Programs

Formula

a(n) = if mu(n)>0 then n else 1.

A080326 Denominator of Sum(k^mu(k): 1<=k<=n), where mu is the Moebius function (A008683).

Original entry on oeis.org

1, 2, 6, 6, 30, 30, 210, 210, 210, 210, 2310, 2310, 30030, 30030, 30030, 30030, 510510, 510510, 9699690, 9699690, 9699690, 9699690, 223092870, 223092870, 223092870, 223092870, 223092870, 223092870, 6469693230, 3234846615
Offset: 1

Views

Author

Dean Hickerson, Feb 15 2003

Keywords

Comments

a(n) is a divisor of A034386(n), the product of the primes <= n. Does a(n) = A034386(n) for infinitely many n?

Crossrefs

Numerators are in A080306. Cf. A080304, A080305, A034386.

Programs

  • Mathematica
    Accumulate[Table[n^MoebiusMu[n],{n,30}]]//Denominator (* Harvey P. Dale, Jul 28 2021 *)
  • PARI
    a(n) = denominator(sum(k = 1, n, k^moebius(k))); \\ Michel Marcus, Aug 29 2013

A080306 Numerator of Sum(k^mu(k): 1<=k<=n), where mu is the Moebius function (A008683).

Original entry on oeis.org

1, 3, 11, 17, 91, 271, 1927, 2137, 2347, 4447, 49127, 51437, 670991, 1091411, 1541861, 1571891, 26752177, 27262687, 518501563, 528201253, 731894743, 945287923, 21751321919, 21974414789, 22197507659, 27997922279, 28221015149
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 13 2003

Keywords

Examples

			a(6) = 1^mu(1)+2^mu(2)+3^mu(3)+4^mu(4)+5^mu(5)+6^mu(6) = 1^1+2^(-1)+3^(-1)+4^0+5^(-1)+6^1 = 1 + 1/2 + 1/3 + 1 + 1/5 + 6 = (30+15+10+30+6+180)/30 = 271/30, therefore a(6)=271, A080326(6)=30.
		

Crossrefs

Denominators are in A080326. Cf. A080304, A080305.

Programs

  • Mathematica
    Accumulate[Table[n^MoebiusMu[n],{n,30}]]//Numerator (* Harvey P. Dale, Nov 13 2021 *)
  • PARI
    a(n) = numerator(sum(k = 1, n, k^moebius(k))); \\ Michel Marcus, Aug 29 2013

A166140 Product of the nonzero elements of the n-th row of A166139.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 900, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 1764, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 900, 61, 62, 21, 2, 65, 4356, 67, 34, 69, 4900, 71, 6, 73, 74, 15
Offset: 1

Views

Author

Mats Granvik, Oct 08 2009

Keywords

Comments

Differs from A007947 at n = 30.

Crossrefs

Programs

A174530 Numerators of the second row of the Akiyama-Tanigawa table for the sequence 1/n!.

Original entry on oeis.org

-1, 0, 3, 4, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 17, 1, 19, 1, 1, 1, 23, 1, 1, 1, 1, 1, 29, 1, 31, 1, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 1, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 1, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79
Offset: 0

Views

Author

Paul Curtz, Mar 21 2010

Keywords

Comments

Filling the top row of a table with T(0,k) = 1/k!, k>=0, the Akiyama-Tanigawa algorithm constructs the following table T(n,k) of fractions, n>=0, k>=0:
1, 1, 1/2, 1/6, 1/24, 1/120, 1/720, 1/5040, 1/40320, 1/362880,...
0, 1, 1, 1/2, 1/6, 1/24, 1/120, 1/720, 1/5040, 1/40320, 1/362880, ...
-1, 0, 3/2, 4/3, 5/8, 1/5, 7/144, 1/105, 1/640, 1/4536, 11/403200, ...
-1, -3, 1/2, 17/6, 17/8, 109/120, 197/720, 107/1680, 487/40320, ..
2, -7, -7, 17/6, 73/12, 457/120, 529/360, 2081/5040, 263/2880,...
9, 0, -59/2, -13, 91/8, 421/30, 355/48, 2161/840, 3871/5760, 709/5040, ..
9, 59, -99/2, -195/2, -319/24, 1593/40, 2701/80, 76631/5040, 4285/896,...
The numerators of T(2,k) are the current sequence.
The denominators are 1, 1, 2, 3, 8, 5, 144, 105, 640, 4536, 403200, 332640, 43545600, 37065600,...
T(0,k) = T(1,k+1), shifted.
The left column is T(n,0) = (-1)^(n+1)*A014182(n).
The column T(n,1) appears to be (-1)^n*A074051(n). - R. J. Mathar, Jan 16 2011
a(n) = numerator(A005563(n-1)/(n-1)!), for n>0. - Fred Daniel Kline, Mar 20 2016

Crossrefs

Programs

  • Mathematica
    nn = 78; Numerator[Simplify[CoefficientList[Series[-Zeta[x] + (Derivative[1][Zeta][x] + x*Derivative[2][Zeta][x])*x, {x, 0, nn}], x]/Table[Derivative[n][Zeta][0], {n, 0, nn}]]] (* Mats Granvik, Nov 11 2013 *)
Showing 1-7 of 7 results.