A080601
Number of positions of the Rubik's cube at a distance of n moves from the solved state, in the half-turn metric.
Original entry on oeis.org
1, 18, 243, 3240, 43239, 574908, 7618438, 100803036, 1332343288, 17596479795, 232248063316, 3063288809012, 40374425656248, 531653418284628, 6989320578825358, 91365146187124313
Offset: 0
- Robert G. Bryan (Jerry Bryan), posting to Cube Lovers List, Jul 10, 1998.
- Rokicki, Tomas. Thirty years of computer cubing: The search for God's number. 2014. Reprinted in "Barrycades and Septoku: Papers in Honor of Martin Gardner and Tom Rogers", ed. Thane Plambeck and Tomas Rokicki, MAA Press, 2020, pp. 79-98. See Table 9.4.
- Rokicki, T., Kociemba, H., Davidson, M., & Dethridge, J. (2014). The diameter of the rubik's cube group is twenty. SIAM REVIEW, 56(4), 645-670. See Table 5.1.
- Alan Bawden, Cube Lovers Archive, Part 25
- Jerry Bryan, God's Algorithm...
- David Dijon, The insanely large number of Rubik's cube permutations | MegaFavNumbers, video (2020)
- Mark Longridge, God's Algorithm Calculations for Rubik's Cube...
- Tomas Rokicki, God's Algorithm out to 13f*
- Tomas Rokicki, God's Number is 20
- T. Rokicki, Twenty-two moves suffice for Rubik's Cube, Math. Intell. 32 (1) (2010) 33-40.
- T. Rokicki, 15f* in the Face Turn Metric.
- T. Rokicki, God's Algorithm out to 14f*
- Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge, The Diameter Of The Rubik's Cube Group Is Twenty, SIAM J. of Discrete Math, Vol. 27, No. 2 (2013), pp. 1082-1105.
a(11) (from Jerry Bryan, 2006) and a(12) (from Tom Rokicki, 2009) added by
Herbert Kociemba, Jun 24 2009
a(14) (from Thomas Scheunemann) and a(15) (from Morley Davidson, John Dethridge,
Herbert Kociemba, and Tomas Rokicki) added by
Tomas Rokicki, Jul 29 2010
A075152
Number of possible permutations of a Rubik cube of size n X n X n.
Original entry on oeis.org
1, 3674160, 43252003274489856000, 7401196841564901869874093974498574336000000000, 282870942277741856536180333107150328293127731985672134721536000000000000000
Offset: 1
Warren Power, Sep 05 2002
- Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
- Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
- Robert Munafo, Table of n, a(n) for n = 1..27 (first 10 terms from Robert G. Wilson v)
- Answers.com, Rubik's Cube.
- Isaiah Bowers, How To Solve A Rubik's Cube.
- Richard Carr, The Number of Possible Positions of an N x N x N Rubik Cube
- Cube Lovers, Discussions on the mathematics of the cube
- Cube Lovers Archive, Mailing List
- Cube20.org, God's Number is 20
- Christophe Goudey, Information
- David Joyner, Adventures in Group Theory: Rubik's Cube, Merlin's Machine, and Other Mathematical Toys, 2008. See Example 4.5.1. p. 73.
- Naren Ramesh, Generalising the configurations of an N X N X N Rubik's Cube, Parabola (2023) Vol. 59, Issue 3. See p. 22.
- Jaap Scherphuis, Puzzle Pages
- Eric Weisstein's World of Mathematics, Rubik's Cube
- WikiHow, How to Solve a Rubik's Cube with the Layer Method
- Wikipedia, Rubik's Cube
- Wikipedia, Professor's Cube
-
f := proc(n) local A,B,C,D,E,F,G; if n mod 2 = 1 then A := (n-1)/2; F := 0; B := 1; C := 1; D := 0; E := (n+1)*(n-3)/4; G := (n-1)*(n-3)/4; else A := n/2; F := 1; B := 1; C := 0; D := 0; E := n*(n-2)/4; G := (n-2)^2/4; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
-
f[n_] := Block[{a, b, c, d, e, f, g}, If[OddQ@ n, a = (n - 1)/2; b = c = 1; d = f = 0; e = (n + 1) (n - 3)/4; g = (n - 1) (n - 3)/4, a = n/2; b = f = 1; c = d = 0; e = n (n - 2)/4; g = (n - 2)^2/4]; Ceiling[(2^a*((8!/2)*3^7)^b*((12!/2)*2^11)^c*((4^6)/2)^d*(24!/2)^e)/(24^f*((24^6)/2)^g)]]; Array[f, 10] (* Robert G. Wilson v, May 23 2009 *)
f[1]=1; f[2]=7!3^6; f[3]=8!3^7 12!2^10;f[n_]:=f[n-2]*24^6*(24!/24^6)^(n-2);Table[f[n],{n,1,10}] (* Herbert Kociemba, Dec 08 2016 *)
f[1]=1;f[n_]:=7!3^6(6*24!!)^(s=Mod[n,2])24!^(r=(n-s)/2-1)(24!/4!^6)^(r(r+s)); Array[f,5] (* Herbert Kociemba, Jul 03 2022 *)
-
A075152(n) := block( if n = 1 then return (1), [a:1,b:1,c:1,d:1,e:1,f:1,g:1], if mod(n, 2) = 1 then ( a : (n-1)/2, f : 0, b : 1, c : 1, d : 0, e : (n+1)*(n-3)/4, g : (n-1)*(n-3)/4 ) else ( a : n/2, f : 1, b : 1, c : 0, d : 0, e : n*(n-2)/4, g : (n-2)^2/4 ), return ( (2^a * ((factorial(8)/2)*3^7)^b * ((factorial(12)/2)*2^11)^c * ((4^6)/2)^d * (factorial(24)/2)^e) / (24^f * ((24^6)/2)^g) ) )$ for i:1 thru 27 step 1 do ( sprint(i, A075152(i)), newline() )$ /* Robert Munafo, Nov 12 2014 */
-
A075152(n)=ceil(3674160*(11771943321600)^(n%2)*620448401733239439360000^floor((n-2)/2)*(3246670537110000)^floor(((n-2)/2)^2)) \\ Davis Smith, Mar 20 2020
A005452
Number of positions that the 3 X 3 X 3 Rubik cube puzzle can be in after exactly n moves, up to equivalence under the full group of order 48 of the cube and with a half-turn is considered to be 2 moves.
Original entry on oeis.org
1, 1, 5, 25, 219, 1978, 18395, 171529, 1601725, 14956266, 139629194, 1303138445, 12157779067, 113382522382, 1056867697737, 9843661720634, 91532722388023, 846837132071729, 7668156860181597
Offset: 0
- Robert G. Bryan (Jerry Bryan), postings to Cube Lovers List, Feb 04, 1995 and Oct 26, 1998.
Added a(13)-a(18). This is based on a great deal of work by a large number of people; full links and credit are on cube20.org/qtm. The numbers were calculated by combining the God's number counts on the main page with the symmetric solution counts on the symmetry page. -
Tomas Rokicki, Sep 01 2014
A080583
Number of positions that the 3 X 3 X 3 Rubik cube puzzle can be in after exactly n moves.
Original entry on oeis.org
1, 18, 262, 3502, 46741, 621649, 8240087, 109043123, 1441386411, 19037866206, 251285929522, 3314574738534, 43689000394782, 575342418679410
Offset: 0
A080638
Number of positions that the 3 X 3 X 3 Rubik cube puzzle can be in after exactly n moves, up to equivalence under the full group of order 48 of the cube and with a half-turn is considered to be 1 move.
Original entry on oeis.org
1, 2, 9, 75, 934, 12077, 159131, 2101575, 27762103, 366611212, 4838564147, 63818720716, 841134600018, 11076115427897
Offset: 0
- Robert G. Bryan (Jerry Bryan), posting to Cube Lovers List, Jul 10, 1998.
A257401
God's number for a Rubik's cube of size n X n X n (using the half turn metric).
Original entry on oeis.org
- Jerry Bryan, God's Algorithm for the 2x2x2 Pocket Cube.
- Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Anna Lubiw, and Andrew Winslow, Algorithms for Solving Rubik's Cubes, in: C. Demetrescu and M. M. Halldórsson (eds.), Algorithms - ESA 2011, 19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011, Proceedings, Lecture Notes in Computer Science, Vol. 6942, Springer, Berlin, Heidelberg, 2011, pp. 689-700; arXiv preprint, arXiv:1106.5736 [cs.DS], 2011.
- Joseph L. Flatley, Rubik's Cube solved in twenty moves, 35 years of CPU time.
- Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge, The Diameter Of The Rubik's Cube Group Is Twenty, SIAM J. of Discrete Math, Vol. 27, No. 2 (2013), pp. 1082-1105.
- Jaap Scherphuis, Mini Cube, the 2×2×2 Rubik's Cube.
- Speedsolving.com, Rubik's Cube Fact sheet.
- Wikipedia, Optimal solutions for Rubik's Cube.
A060010
Number of 2n-move sequences on the 3 X 3 X 3 Rubik's Cube (only quarter-twists count as moves) that leave the cube unchanged.
Original entry on oeis.org
1, 12, 312, 10464, 398208, 16323072, 702465024
Offset: 0
There are 12 closed walks of length 2: F*F^(-1), F^(-1)*F, R*R^(-1), R^(-1)*R, ..., D*D^(-1), D^(-1)*D.
A333298
Number of canonical sequences of moves of length n for the Rubik cube puzzle using the half-turn metric.
Original entry on oeis.org
1, 18, 243, 3240, 43254, 577368, 7706988, 102876480, 1373243544, 18330699168, 244686773808, 3266193870720, 43598688377184, 581975750199168, 7768485393179328, 103697388221736960, 1384201395738071424, 18476969736848122368, 246639261965462754048, 3292256598848819251200
Offset: 0
- Rokicki, Tomas. Thirty years of computer cubing: The search for God's number. 2014. Reprinted in "Barrycades and Septoku: Papers in Honor of Martin Gardner and Tom Rogers", ed. Thane Plambeck and Tomas Rokicki, MAA Press, 2020, pp. 79-98.
- Rokicki, T., Kociemba, H., Davidson, M., & Dethridge, J. (2014). The diameter of the rubik's cube group is twenty. SIAM REVIEW, 56(4), 645-670. Table 5.1 gives terms 0 through 20.
A333299
Number of canonical sequences of moves of length n for the Rubik's cube puzzle using the quarter-turn metric.
Original entry on oeis.org
1, 12, 114, 1068, 10011, 93840, 879624, 8245296, 77288598, 724477008, 6791000856, 63656530320, 596694646092, 5593212493440, 52428869944896, 491450379709824, 4606688566257048, 43181530471120320, 404768967341615520, 3794166513675844032, 35565225338407615152
Offset: 0
- Rokicki, Tomas. Thirty years of computer cubing: The search for God's number. 2014. Reprinted in "Barrycades and Septoku: Papers in Honor of Martin Gardner and Tom Rogers", ed. Thane Plambeck and Tomas Rokicki, MAA Press, 2020, pp. 79-98. Table 9.5 gives terms 0 through 18.
-
CoefficientList[Series[1 + 3a/(1 - 2a) /. a -> (1 + x)^4 - 1, {x, 0, 100}], x] (* Ben Whitmore, Dec 30 2024 *)
Showing 1-9 of 9 results.
Comments